环论
交换环是指其中運算「·」符合交換律的环,本身比較容易理解。代数几何及代數數論中有許多交换环的例子,也帶動了交换环理論的發展,這部份後來稱為交換代數,是現代數學中的主要領域之一。代数几何、代數數論及交換代數在本質上連結的非常緊密,因此有時很難去區分某特定數學原理屬於哪個領域。例如希尔伯特零点定理是代数几何的基本定理,但是陳述及證明時都是以交換代數的方式進行。而费马大定理問題的形式是以基本的算术方式(屬於交換代數的一部份)呈現,但其證明用到很深的代数几何及代数數論。 非交換環是指其中運算「·」不符合交換律的环,會有一些和交换环不同的的特殊特性。非交換環此一數學概念本身也在進展,而近來的也有一些研究將特定的非交換環以幾何的方式表示,例如在(不存在的)非交換空間下的函数環。這種趨勢自1980年代開始發展,也和量子群的出現同時。目前對非交換環已有多一些的認識,尤其是非交換的諾特環[1]。 在「环 (代数)」條目中,有環的定義以及其基本的概念及性質。 一些有關的定理一般: 結構定理:
腳註
|
Index:
pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve
Portal di Ensiklopedia Dunia