2019年,葛拉罕·M·休吉斯(Graham M. Hughes)和約翰·費納雷利(John A. Finarelli)分析現代鳥類與各種有保存頭骨的已滅絕恐龍物種的嗅球比率,來推測有多少基因參與了嗅覺強度。他們的分析發現多數似鳥龍類有相對弱的嗅覺感官;似金翅鳥龍只有約417個嗅覺受體的基因編碼,以及嗅球比率為28.8,代表嗅覺發育不良。鑑於這些數值在體型較大的恐龍物種(如暴龍科)中較為顯著,休吉斯和費納雷利指出,當恐龍支系演化成大型時,嗅球的體積亦隨之增加,這可能表示嗅覺在非鳥類恐龍中是佔據主導地位的感官類型。[26]
2015年,安德魯·庫夫(Andrew R. Cuff)和艾蜜莉·雷菲德(Emily J. Rayfield)對似金翅鳥龍、似鳥龍、似鴕龍的扭曲埋藏標本進行了CT掃描,以將變形的化石還原至動物生前的原始狀態。標本的完整性及掃瞄使能夠重建出下頜肌肉組織(運動傳導的內收肌),並貼上到頭骨圖像的對應位置。此外根據大型平胸鳥類(鴕鳥等)將嘴喙延伸範圍重建成大型和小型兩種形式。在研究的三個物種中,似金翅鳥龍的咬合力減少最多:喙尖端19N、喙中部23.9N。但似金翅鳥龍具有最特化的肌肉力學優勢和施力臂(用來衡量肌肉在系統配置中對特定運動作出貢獻之效率)。根據這點發現似金翅鳥龍和另外兩種似鳥龍科之間最明顯的肌肉差異在於後兩者大部分肌肉具力學優勢;可能是因為似金翅鳥龍頭骨較長所造成。庫夫和雷菲德指出,因為似金翅鳥龍的重建加入了似鴕龍下頜骨作參考,及考慮MPC-D 100/13標本是一隻雅成年個體,其推測出的咬合力精確度可能有限。他們暫時認同相對較差的咬合力,搭配嘴喙讓似鳥龍類以植物為主食,並受頸部肌肉足夠力量的加持來拔下植物。[17]
2019年,大衛·巴頓(David J. Button)和林賽·贊諾(英语:Lindsay E. Zanno)參考了160種恐龍的頭骨力學特徵,進行了大規模的系統發生學分析,來檢驗非鳥類恐龍中多次演化出植食性的現象。他們的結果發現,植食恐龍主要遵循兩種不同的覓食方式:一種是仰賴腸道處理,特徵為頭骨相對纖弱、咬合力較差;另一種是透過咀嚼,反映出較佳的咬合力與較強壯的下頜咀嚼肌。似金翅鳥龍與恐手龍、還有近頜龍科、梁龍科、似鳥龍科、鐮刀龍科、泰坦巨龍類被發現屬於第一種腸道類型,代表似金翅鳥龍確實咬合力較差、並仰賴胃部來處理食物。似鳥龍科和恐手龍科的體型巨大化是獨立發展出來的,大體型為植食動物提供的優勢包含對斷食的忍耐力和更大量的食物攝取量。於是這些習性顯示兩者屬於更偏向植食性的生活型態。然而巴頓和贊諾指出,植食性與體型變化並沒有顯著相關,似鳥龍科並未出現體重線性增加的趨勢。再者,針對大部分似鳥龍類看來,生態棲位的特化並沒有產生很好的效率,其中只有恐手龍發展出機會主義的雜食性生活型態。巴頓和贊諾得出結論:歷史上這些彼此不相關的植食恐龍的覓食策略是平行演化出來的。[28]
^Barsbold, R.; Osmólska, H. Ornithomimosauria. Weishampel, D. B.; Osmolska, H.; Dodson, P. (编). The Dinosauria 1st. Berkeley: University of California Press. 1990: 225−244. ISBN 9780520067271.
^Currie, P. J.; Russell, D. A. Osteology and relationships of Chirostenotes pergracilis (Saurischia, Theropoda) from the Judith River (Oldman) Formation of Alberta, Canada. Canadian Journal of Earth Sciences. 1988, 25 (7): 272−286. Bibcode:1988CaJES..25..972C. doi:10.1139/e88-097.
^Holtz, T. R. An unusual structure of the metatarsus of Theropoda (Archosauria: Dinosauria: Saurischia) of the Cretaceous (学位论文). Yale University: 347. 1992.
^ 6.06.1Currie, P. J.; Eberth, D. A. Palaeontology, sedimentology and palaeoecology of the Iren Dabasu Formation (Upper Cretaceous), Inner Mongolia, People's Republic of China. Cretaceous Research. 1993, 14 (2): 127−144. doi:10.1006/cres.1993.1011.
^ 10.010.1Chinzorig, T.; Kobayashi, Y.; Saneyoshi, M.; Tsogtbaatar, K.; Batamkhatan, Z.; Ryuji, T. Multitaxic bonebed of two new ornithomimids (Theropoda, Ornithomimosauria) from the Upper Cretaceous Bayanshiree Formnation of southeastern Gobi desert, Mongolia. Journal of Vertebrate Paleontology. 2017,. Program and Abstracts: 97.
^Zelenitsky, D. K.; Therrien, F.; Erickson, G. M.; DeBuhr, C. L.; Kobayashi, Y.; Eberth, D. A.; Hadfield, F. Feathered Non-Avian Dinosaurs from North America Provide Insight into Wing Origins. Science. 2012, 338 (6106): 510–−514. Bibcode:2012Sci...338..510Z. PMID 23112330. doi:10.1126/science.1225376.
^Van der Reest, A. J.; Wolfe, A. P.; Currie, P. J. A densely feathered ornithomimid (Dinosauria: Theropoda) from the Upper Cretaceous Dinosaur Park Formation, Alberta, Canada. Cretaceous Research. 2016, 58: 108−117. doi:10.1016/j.cretres.2015.10.004.
^Serrano-Brañas, C. I.; Espinosa-Chávez, B.; Maccracken, S. A.; Gutiérrez-Blando, C.; de León-Dávila, C.; Ventura, J. F. Paraxenisaurus normalensis, a large deinocheirid ornithomimosaur from the Cerro del Pueblo Formation (Upper Cretaceous), Coahuila, Mexico. Journal of South American Earth Sciences. 2020, 101: 102610. Bibcode:2020JSAES.101j2610S. doi:10.1016/j.jsames.2020.102610.
^Barrett, P. M. The diet of ostrich dinosaurs (Theropoda: Ornithomimosauria). Palaeontology. 2005, 48 (2): 347−358. doi:10.1111/j.1475-4983.2005.00448.x.
^ 29.029.1Jerzykiewicz, T.; Russell, D. A. Late Mesozoic stratigraphy and vertebrates of the Gobi Basin. Cretaceous Research. 1991, 12 (4): 345–377. doi:10.1016/0195-6671(91)90015-5.
^Kurumada, Y.; Aoki, S.; Aoki, K.; Kato, D.; Saneyoshi, M.; Tsogtbaatar, K.; Windley, B. F.; Ishigaki, S. Calcite U–Pb age of the Cretaceous vertebrate‐bearing Bayn Shire Formation in the Eastern Gobi Desert of Mongolia: usefulness of caliche for age determination. Terra Nova. 2020, 32 (4): 246−252. Bibcode:2020TeNov..32..246K. doi:10.1111/ter.12456.
^Danilov, I. G.; Hirayama, R.; Sukhanov, V. B.; Suzuki, S.; Watabe, M.; Vitek, N. S. Cretaceous soft-shelled turtles (Trionychidae) of Mongolia: new diversity, records and a revision. Journal of Systematic Palaeontology. 2014, 12 (7): 799–832. doi:10.1080/14772019.2013.847870.
^ 34.034.1Lee, Y. M.; Lee, H. J.; Kobayashi, Y.; Carabajal, A. P.; Barsbold, R.; Fiorillo, A. R.; Tsogtbaatar, K. Unusual locomotion behaviour preserved within a crocodyliform trackway from the Upper Cretaceous Bayanshiree Formation of Mongolia and its palaeobiological implications. Palaeogeography, Palaeoclimatology, Palaeoecology. 2019, 533 (109353): 2. Bibcode:2019PPP...533j9239L. doi:10.1016/j.palaeo.2019.109239.
^ 38.038.1Park, J. Y.; Lee, Y. N.; Currie, P. J.; Kobayashi, Y.; Koppelhus, E.; Barsbold, R.; Mateus, O.; Lee, S.; Kim, S. H. Additional skulls of Talarurus plicatospineus (Dinosauria: Ankylosauridae) and implications for paleobiogeography and paleoecology of armored dinosaurs. Cretaceous Research. 2020, 108: 104340. doi:10.1016/j.cretres.2019.104340.
^Powers, M. A.; Sullivan, C.; Currie, P. J. Re-examining ratio based premaxillary and maxillary characters in Eudromaeosauria (Dinosauria: Theropoda): Divergent trends in snout morphology between Asian and North American taxa. Palaeogeography, Palaeoclimatology, Palaeoecology. 2020, 547 (109704): 109704. Bibcode:2020PPP...547j9704P. doi:10.1016/j.palaeo.2020.109704.
^Slowiak, J.; Szczygielski, T.; Ginter, M.; Fostowicz-Frelik, L. Uninterrupted growth in a non‐polar hadrosaur explains the gigantism among duck‐billed dinosaurs. Palaeontology. 2020, 63 (4): 579–599. doi:10.1111/pala.12473.
^Watabe, M.; Suzuki, S. Report on the Japan - Mongolia Joint Paleontological Expedition to the Gobi desert, 1993. Hayashibara Museum of Natural Sciences Research Bulletin. 2000, 1: 19−29.
^Watabe, M.; Suzuki, S. Report on the Japan - Mongolia Joint Paleontological Expedition to the Gobi desert, 1994. Hayashibara Museum of Natural Sciences Research Bulletin. 2000, 1: 30−44.