小さい圏の圏数学の特に圏論における(小さい)圏の圏(ちいさいけんのけん、英: category of small categories)Cat は、すべての小さい圏を対象とし、圏の間の函手を射とする圏である。実際には、Cat は自然変換を二次元の射 (2-射) とする二次圏 (2-圏) を成すものと見なせる。 Cat の始対象は対象も射も持たない空圏 0 であり[1]、終対象はただ一つの対象とただ一つの射(唯一の対象上の恒等射)のみからなる圏 1(自明圏あるいは終圏という)である[2]。 小さい圏の圏 Cat それ自身は大きい圏であり、それゆえ自身を対象として含むことはない。ラッセルの逆理(の圏版)を避けるには「すべての(小さいとは限らない)圏の圏」はあってはならないが、「すべての圏の擬圏」(quasicategory[注釈 1] of categories) CATを考える[注釈 2]ことはできる(擬圏は大きい圏を対象にできるという意味で圏ではないとすれば、圏の擬圏は自身を対象に含まない)。 性質圏の圏 Cat は、各圏に対してその恒等射と射の合成を忘れることにより、箙の圏 Quiv への忘却函手 U: Cat → Quiv が定義できる。この忘却函手 U の左随伴 F: Quiv → Cat は各箙にそれが生成する自由圏を対応させる自由函手である。 注注釈出典
関連項目外部リンク |
Index:
pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve
Portal di Ensiklopedia Dunia