恒等律: 任意の対象 X に対して。X 上の恒等射と呼ばれる射 idX: X → X が存在して、任意の射 f: A → B に対して idB ∘ f = f = f ∘ idA が成立する。
結合律: h ∘ (g ∘ f) = (h ∘ g) ∘ f が演算の定義される限りにおいて成り立つ。
具体圏 C においては、恒等射はまさに恒等写像であり、合成はまさに通常の写像の合成である。この場合、結合律は写像の合成が結合的であることから満たされる。
本当は終域と始域は射を決定する情報の一部であることに注意すべきである。例えば、集合の圏において、射は写像であるが、順序対全体の成す集合(つまりグラフ)としては一致するが終域の異なる二つの写像というのは、圏論的に見れば相異なる。そこで射の類 hom(X, Y) は X, Y が異なれば交わりを持たないと仮定する文献もある。実用上はこれはあまり問題ではなく、この仮定が満たされない場合には射にその始域と終域とを(順序三つ組の第二、第三成分として)追加してやれば回避することができる。
特定の種類の射
単射: 射 f: X → Y が単射 (mono-morphism) であるとは、f ∘ g1 = f ∘ g2 ならば g1 = g2 が任意の射 g1, g2: Z → X に対して成り立つことである。モノ射 (mono) あるいは単型射 (monic) とも呼ばれる[1]。
射 f が左逆射 (left inverse) を持つとは、射 g: Y → X で g ∘ f = idX を満たすものが存在するときに言う。左逆射 g は f の引き込み(英語版) (retraction) とも言う[1]。左逆射を持つ射は常に単射だが、逆は任意の圏においては必ずしも成り立たない(左逆射をもたない単射が存在する)。
分裂単射 (split monomorphism) h: X → Y は左逆射 g: Y → X, (g ∘ h = idX) を持つ単射を言う。このとき h ∘ g: Y → Y は冪等、すなわち (h ∘ g)2 = h ∘ g が成立する。
全射: 双対的に、f: X → Y が全射 (epi-morphism) であるとは、g1 ∘ f = g2 ∘ f ならば g1 = g2 が任意の射 g1, g2: Y → Z に対して成立するときに言う。エピ射 (epi) あるいは全型射 (epic) とも言う[1]。
射 f が右逆射 (right inverse) を持つとは、射 g: Y → X で f ∘ g = idY を満たすものが存在するときに言う。右逆射 g は f の切断あるいは断面 (section) とも言う[1]。右逆射をもつ射は必ず全射だが、逆は任意の圏においては必ずしも成り立たず、右逆射を持たない全射が存在する。
分裂全射 (split epimorphism) は右逆元を持つ全射を言う。単射 f が左逆射 g に関して分裂するとき、g は右逆元 f を持つ分裂全射である。
同型射: 射 f: X → Y に対して射 g: Y → X が存在し、 f ∘ g = idY かつ g ∘ f = idX が成り立つものを同型射であると言う。射 f が左逆射と右逆射をともに持つとき、両者は一致して f は同型射であり、g は単に f の逆射 (inverse) と呼ばれる。逆射は、それが存在すれば一意である。逆射 g もやはり同型射であり、逆射として f を持つ。二つの対象がその間に同型射を持つとき、それら二つは互いに同型あるいは同値であるという。注意すべきは、任意の同型射は双射だが、双射は必ずしも同型射ではないことである。例えば、可換環の圏において包含射 Z → Q は双射だが同型射ではない。しかし、全射かつ分裂単射であるような、もしくは単射かつ分裂全射であるような任意の射は同型射でなければならない。集合の圏 Set のように、任意の双射が同型射であるような圏は、均衡圏 (balanced category) と呼ばれる。
自己射: 射 f: X → X は、対象 X の自己射と言う。冪等自己射 f が分裂自己射 (split endomorphism) であるとは、分解 f = h ∘ g で g ∘ h = id を満たすものが存在するときに言う。特に、圏のカロウビ展開圏(英語版)は、任意の冪等射が分裂する。