Titanium dapat digunakan sebagai aloi dengan besi, aluminium, vanadium, dan molybdenum, untuk memproduksi aloi yang kuat namun ringan untuk penerbangan (mesin jet, misil, adan wahana antariksa), militer, proses industri (kimia dan petrokimia, pabrik desalinasi, pulp, dan kertas), otomotif, agro industri, alat kedokteran, implan ortopedi, peralatan dan instrumen dokter gigi, implan gigi, alat olahraga, perhiasan, telepon genggam, dan masih banyak aplikasi lainnya.[5]
Dua sifat yang paling berguna pada titanium adalah ketahanan korosi dan rasio kekuatan terhadap densitasnya yang paling tinggi di antara semua logam lain.[8] Pada kondisi murni, titanium sama kuat dengan beberapa baja, tetapi lebih ringan.[9] Ada dua bentuk alotropi[10] dan lima isotop alami dari unsur ini, 46Ti sampai 50Ti, dengan 48Ti adalah yang paling banyak terdapat di alam (73,8%).[11] Meski memiliki jumlah elektron valensi dan berada pada golongan tabel periodik yang sama dengan zirkonium, keduanya memiliki banyak perbedaan pada sifat kimia dan fisika.
Oksida yang paling penting adalah TiO2, yang ada pada 3 polimorf; anatase, brookite, dan rutile. Ketiganya adalah padatan diamagnetik warna putih, meski ada beberapa sampelnya berwarna gelap (lihat rutile).
Beberapa macam oksida tereduksi dari titanium telah diketahui. Ti3O5 adalah semikonduktor warna ungu yang diproduksi dari reduksi TiO2 dengan hidrogen pada suhu tinggi,[15] dan digunakan pada industri ketika ada permukaan yang perlu di-vapour-coated dengan titanium dioksida: akan menguap sebagai TiO murni, sedangkan TiO2 menguap sebagai campuran oksida dan dan pelapisan deposit dengan indeks refraktif bervariasi.[16] Juga senyawa yang dikenal adalah Ti2O3, dengan struktur karborundum, dan TiO.[17]
Alkoksida dari titanium(IV), dibuat dengan mereaksikan TiCl4 dengan alkohol, adalah senyawa tak berwarna yang akan berubah menjadi dioksida ketika direaksikan dengan air. Dalam industri hal ini berguna untuk mendapatkan padatan TiO2 via proses sol-gel. Titanium isopropoksida digunakan dalam sintesis senyawa organik kiral melalui proses sharpless.
Titanium membentuk berbagai macam varietas sulfida, tetapi hanya TiS2 yang menarik perhatian. Senyawa ini digunakan sebagai katode dalam pengembangan baterai litium. Karena Ti(IV) adalah "kation berat", sulfida titanium tidak stabil dan cenderung terhidrolisis dengan pelepasan hidrogen sulfida.
Keunggulan Titanium
Salah satu karakteristik Titanium yang paling terkenal adalah dia sama kuat dengan baja tetapi hanya 60% dari berat baja.
Kekuatan lelah (fatigue strength) yang lebih tinggi daripada paduan aluminium.
Tahan suhu tinggi. Ketika temperatur pemakaian melebihi 150 C maka dibutuhkan titanium karena aluminium akan kehilangan kekuatannya secara nyata.
Tahan korosi. Ketahanan korosi titanium lebih tinggi daripada aluminium dan baja.
Dengan rasio berat-kekuatan yang lebih rendah daripada aluminium, maka komponen-komponen yang terbuat dari titanium membutuhkan ruang yang lebih sedikit dibanding aluminium.[18]
Aplikasi Titanium
Militer. Oleh karena kekuatannya, unsur ini digunakan untuk membuat peralatan perang (tank) dan untuk membuat pesawat ruang angkasa.
Industri. Beberapa mesin pemindah panas (heat exchanger)dan bejana bertekanan tinggi serta pipa-pipa tahan korosi memakai bahan titanium.
Kedokteran. Bahan implan gigi, penyambung tulang, pengganti tulang tengkorak, struktur penahan katup jantung.
Mesin. Material pengganti untuk batang piston.
Perikanan. Karena sifat Titanium yang kuat, ringan, dan tahan korosif air laut jadi untuk pembuatan pancingan.
Galeri
Titanium
Referensi
^(Indonesia)"Titanium". KBBI Daring. Diakses tanggal 17 Juli 2022.
^Jilek, Robert E.; Tripepi, Giovanna; Urnezius, Eugenijus; Brennessel, William W.; Young, Victor G., Jr.; Ellis, John E. (2007). "Zerovalent titanium–sulfur complexes. Novel dithiocarbamato derivatives of Ti(CO)6: [Ti(CO)4(S2CNR2)]−". Chem. Commun. (25): 2639–2641. doi:10.1039/B700808B. PMID17579764.
^Liu, Gang; Huang, Wan-Xia; Yi, Yong (26 June 2013). "Preparation and Optical Storage Properties of λTi3O5 Powder". Journal of Inorganic Materials (dalam bahasa Chinese). 28 (4): 425–430. doi:10.3724/SP.J.1077.2013.12309.Pemeliharaan CS1: Bahasa yang tidak diketahui (link)
^Greenwood, Norman N.; Earnshaw, A. (1997), Chemistry of the Elements (edisi ke-2), Oxford: Butterworth-Heinemann, hlm. 962, ISBN0-7506-3365-4Pemeliharaan CS1: Banyak nama: authors list (link)