3-磷酸甘油酸 (英語:3-phosphoglycerate , 3PG 或glycerate 3-phosphate
GP )是生物細胞中常見的分子之一,也是糖解作用 與卡爾文循環 過程裡的中間產物。(註:在卡爾文循環 當中簡寫為PGA )
在糖解作用中,3-磷酸甘油酸是由1,3-雙磷酸甘油酸 在磷酸甘油酸激酶 (Phosphoglycerate kinase)的催化中產生的。每一分子3-雙磷酸甘油酸會使一分子的ADP 轉變成為的ATP ,原理是接在1,3-雙磷酸甘油酸上的兩個磷酸根 ,其中有一個轉移到ADP之上。這個反應需要鎂 離子(Mg2+ )的幫助。
接下來3-磷酸甘油酸將會在磷酸甘油酸變位酶 (Phosphoglycerate)的催化下生成2-磷酸甘油酸,在此反應中,原本接在3-磷酸甘油酸,即己催化,下生成2-磷酸甘油酸的碳上的磷酸根,將會轉移到變位酶上;然後原本在變位酶上的磷酸根,則會接到3-磷酸甘油酸的碳上,反應前後的變位酶整體結構沒有變化。與上一步驟相同,此反應同樣需要Mg2+
糖酵解
在糖酵解途径中,1,3-二磷酸甘油酸在偶联反应中去磷酸化形成 3-磷酸甘油酸,通过底物水平磷酸化 产生两个ATP 。 [ 1] 然后,3-PGA 分子上留下的单个磷酸基团从末端碳移动到中心碳,产生 2-磷酸甘油酸 酯。这种磷酸基重定位由磷酸甘油酸变位 酶催化,该酶也催化逆反应。 [ 2]
卡尔文-本森循环
在不依赖于光的反应 (也称为卡尔文-本森循环)中,合成了两个 3-磷酸甘油酸分子。 RuBP 是一种 5 碳糖,在rubisco 酶的催化下进行碳固定 ,变成不稳定的 6 碳中间体。 然后,该中间体被裂解成两个独立的 3-碳 3-PGA 分子。 [ 3] 所得 3-PGA 分子之一继续通过 Calvin-Benson 循环再生为 RuBP,而另一个则通过两个步骤还原形成一分子甘油醛 3-磷酸 (G3P):将 3-PGA磷酸 化为1, 3-二磷酸甘油酸 通过磷酸甘油酸激酶(与糖酵解中的反应相反)生成,随后由甘油醛 3-磷酸脱氢酶催化生成 G3P。 [ 4] [ 6] G3P 最终反应形成糖,如葡萄糖 或果糖 或更复杂的淀粉 。 [ 7] :156 [ 4]
氨基酸合成
3-磷酸甘油酯(由 3-磷酸甘油酸形成)也是丝氨酸 的前体,丝氨酸反过来又可以通过同型半胱氨酸 循环产生半胱氨酸 和甘氨酸 。 [ 8] [ 9] [ 10]
测量
3-磷酸甘油酸可以使用纸色谱 [ 11] 以及柱色谱 和其他色谱分离方法来分离和测量。 [ 12] 它可以使用气相色谱法 和液相色谱质谱法 进行鉴定,并已针对使用串联质谱技术的评估进行了优化。 [ 13] [ 14] [ 15]
参考文献
^ Rye, Connie; Wise, Robert; Jurukovski, Vladimir; DeSaix, Jean; Choi, Jung; Avissar, Yael. https://openstax.org/books/biology/pages/7-2-glycolysis . Glycolysis . OpenStax College. 2016 [2023-08-28 ] . (原始内容存档 于2014-05-30). Rye, Connie; Wise, Robert; Jurukovski, Vladimir; DeSaix, Jean; Choi, Jung; Avissar, Yael (2016). "Glycolysis" (页面存档备份 ,存于互联网档案馆 ). Biology (页面存档备份 ,存于互联网档案馆 ). OpenStax College.
^ Rose, Z.B.; Dube, S. Rates of phosphorylation and dephosphorylation of phosphoglycerate mutase and bisphosphoglycerate synthase. Journal of Biological Chemistry. 1976, 251 (16): 4817–4822. PMID 8447 . doi:10.1016/S0021-9258(17)33188-5 . Rose, Z.B.; Dube, S. (1976). "Rates of phosphorylation and dephosphorylation of phosphoglycerate mutase and bisphosphoglycerate synthase" . Journal of Biological Chemistry . 251 (16): 4817–4822. doi :10.1016/S0021-9258(17)33188-5 . PMID 8447 (页面存档备份 ,存于互联网档案馆 ).
^ Andersson, I. Catalysis and regulation in Rubisco . Journal of Experimental Botany. 2008, 59 (7): 1555–1568. PMID 18417482 . doi:10.1093/jxb/ern091 . Andersson, I. (2008). "Catalysis and regulation in Rubisco" . Journal of Experimental Botany . 59 (7): 1555–1568. doi :10.1093/jxb/ern091 . PMID 18417482 (页面存档备份 ,存于互联网档案馆 ).
^ 4.0 4.1 Moran, L. The Calvin Cycle: Regeneration . Sandwalk. 2007 [11 May 2021] . (原始内容存档 于2022-09-27). Moran, L. (2007). "The Calvin Cycle: Regeneration" (页面存档备份 ,存于互联网档案馆 ). Sandwalk . Retrieved 11 May 2021 .
^ Fridlyand, L.E.; Scheibe, R. Regulation of the Calvin cycle for CO2 fixation as an example for general control mechanisms in metabolic cycles. Biosystems. 1999, 51 (2): 79–93. PMID 10482420 . doi:10.1016/S0303-2647(99)00017-9 . Fridlyand, L.E.; Scheibe, R. (1999). "Regulation of the Calvin cycle for CO2 fixation as an example for general control mechanisms in metabolic cycles". Biosystems . 51 (2): 79–93. doi :10.1016/S0303-2647(99)00017-9 . PMID 10482420 (页面存档备份 ,存于互联网档案馆 ).
^ Leegood, R.C.; Sharkey, T.D.; von Caemmerer, S. (编). Photosynthesis: Physiology and Metabolism . Advances in Photosynthesis 9 . Kluwer Academic Publishers. 2000. ISBN 978-0-7923-6143-5 . doi:10.1007/0-306-48137-5 . Leegood, R.C.; Sharkey, T.D.; von Caemmerer, S., eds. (2000). Photosynthesis: Physiology and Metabolism . Advances in Photosynthesis. Vol. 9. Kluwer Academic Publishers. doi :10.1007/0-306-48137-5 . ISBN 978-0-7923-6143-5 .
^ Igamberdiev, A.U.; Kleczkowski, L.A. The Glycerate and Phosphorylated Pathways of Serine Synthesis in Plants: The Branches of Plant Glycolysis Linking Carbon and Nitrogen Metabolism . Frontiers in Plant Science. 2018, 9 (318): 318. PMC 5861185 . PMID 29593770 . doi:10.3389/fpls.2018.00318 . Igamberdiev, A.U.; Kleczkowski, L.A. (2018). "The Glycerate and Phosphorylated Pathways of Serine Synthesis in Plants: The Branches of Plant Glycolysis Linking Carbon and Nitrogen Metabolism" (页面存档备份 ,存于互联网档案馆 ). Frontiers in Plant Science . 9 (318): 318. doi :10.3389/fpls.2018.00318 . PMC 5861185 (页面存档备份 ,存于互联网档案馆 ) . PMID 29593770 (页面存档备份 ,存于互联网档案馆 ).
^ Ichihara, A.; Greenberg, D.M. Pathway of Serine Formation from Carbohydrate in Rat Liver . PNAS. 1955, 41 (9): 605–609. Bibcode:1955PNAS...41..605I . JSTOR 89140 . PMC 528146 . PMID 16589713 . doi:10.1073/pnas.41.9.605 . Ichihara, A.; Greenberg, D.M. (1955). "Pathway of Serine Formation from Carbohydrate in Rat Liver" (页面存档备份 ,存于互联网档案馆 ). PNAS . 41 (9): 605–609. Bibcode :1955PNAS...41..605I (页面存档备份 ,存于互联网档案馆 ). doi :10.1073/pnas.41.9.605 . JSTOR 89140 (页面存档备份 ,存于互联网档案馆 ). PMC 528146 (页面存档备份 ,存于互联网档案馆 ) . PMID 16589713 (页面存档备份 ,存于互联网档案馆 ).
^ Hanford, J.; Davies, D.D. Formation of Phosphoserine from 3-Phosphoglycerate in Higher Plants. Nature. 1958, 182 (4634): 532–533. Bibcode:1958Natur.182..532H . S2CID 4192791 . doi:10.1038/182532a0 . Hanford, J.; Davies, D.D. (1958). "Formation of Phosphoserine from 3-Phosphoglycerate in Higher Plants". Nature . 182 (4634): 532–533. Bibcode :1958Natur.182..532H (页面存档备份 ,存于互联网档案馆 ). doi :10.1038/182532a0 . S2CID 4192791 .
^ Cowgill, R.W.; Pizer, L.I. Purification and Some Properties of Phosphorylglyceric Acid Mutase from Rabbit Skeletal Muscle. Journal of Biological Chemistry. 1956, 223 (2): 885–895. PMID 13385236 . doi:10.1016/S0021-9258(18)65087-2 . Cowgill, R.W.; Pizer, L.I. (1956). "Purification and Some Properties of Phosphorylglyceric Acid Mutase from Rabbit Skeletal Muscle" . Journal of Biological Chemistry . 223 (2): 885–895. doi :10.1016/S0021-9258(18)65087-2 . PMID 13385236 (页面存档备份 ,存于互联网档案馆 ).
^ Hofer, H.W. Separation of glycolytic metabolites by column chromatography. Analytical Biochemistry. 1974, 61 (1): 54–61. PMID 4278264 . doi:10.1016/0003-2697(74)90332-7 . Hofer, H.W. (1974). "Separation of glycolytic metabolites by column chromatography". Analytical Biochemistry . 61 (1): 54–61. doi :10.1016/0003-2697(74)90332-7 . PMID 4278264 (页面存档备份 ,存于互联网档案馆 ).
^ 3-Phosphoglyceric acid (HMDB0000807) . Human Metabolome Database. The Metabolomics Innovation Centre. [23 May 2021] . (原始内容存档 于2023-07-06). "3-Phosphoglyceric acid (HMDB0000807)" (页面存档备份 ,存于互联网档案馆 ). Human Metabolome Database . The Metabolomics Innovation Centre. Retrieved 23 May 2021 .
^ Shibayama, J.; Yuzyuk, T.N.; Cox, J.; et al. Metabolic Remodeling in Moderate Synchronous versus Dyssynchronous Pacing-Induced Heart Failure: Integrated Metabolomics and Proteomics Study . PLOS ONE. 2015, 10 (3): e0118974. Bibcode:2015PLoSO..1018974S . PMC 4366225 . PMID 25790351 . doi:10.1371/journal.pone.0118974 . Shibayama, J.; Yuzyuk, T.N.; Cox, J.; et al. (2015). "Metabolic Remodeling in Moderate Synchronous versus Dyssynchronous Pacing-Induced Heart Failure: Integrated Metabolomics and Proteomics Study" . PLOS ONE . 10 (3): e0118974. Bibcode :2015PLoSO..1018974S (页面存档备份 ,存于互联网档案馆 ). doi :10.1371/journal.pone.0118974 . PMC 4366225 . PMID 25790351 (页面存档备份 ,存于互联网档案馆 ).
^ Xu, J.; Zhai, Y.; Feng, L. An optimized analytical method for cellular targeted quantification of primary metabolites in tricarboxylic acid cycle and glycolysis using gas chromatography-tandem mass spectrometry and its application in three kinds of hepatic cell lines. Journal of Pharmaceutical and Biomedical Analysis. 2019, 171 : 171–179. PMID 31005043 . S2CID 125170446 . doi:10.1016/j.jpba.2019.04.022 . Xu, J.; Zhai, Y.; Feng, L. (2019). "An optimized analytical method for cellular targeted quantification of primary metabolites in tricarboxylic acid cycle and glycolysis using gas chromatography-tandem mass spectrometry and its application in three kinds of hepatic cell lines". Journal of Pharmaceutical and Biomedical Analysis . 171 : 171–179. doi :10.1016/j.jpba.2019.04.022 . PMID 31005043 (页面存档备份 ,存于互联网档案馆 ). S2CID 125170446 .