Stirling numbers of the second kind

The 15 partitions of a 4-element set ordered in a Hasse diagram
There are S(4,1), ..., S(4, 4) = 1, 7, 6, 1 partitions containing 1, 2, 3, 4 sets.

In mathematics, particularly in combinatorics, a Stirling number of the second kind (or Stirling partition number) is the number of ways to partition a set of n objects into k non-empty subsets and is denoted by or .[1] Stirling numbers of the second kind occur in the field of mathematics called combinatorics and the study of partitions. They are named after James Stirling.

The Stirling numbers of the first and second kind can be understood as inverses of one another when viewed as triangular matrices. This article is devoted to specifics of Stirling numbers of the second kind. Identities linking the two kinds appear in the article on Stirling numbers.

Definition

The Stirling numbers of the second kind, written or or with other notations, count the number of ways to partition a set of labelled objects into nonempty unlabelled subsets. Equivalently, they count the number of different equivalence relations with precisely equivalence classes that can be defined on an element set. In fact, there is a bijection between the set of partitions and the set of equivalence relations on a given set. Obviously,

for n ≥ 0, and for n ≥ 1,

as the only way to partition an n-element set into n parts is to put each element of the set into its own part, and the only way to partition a nonempty set into one part is to put all of the elements in the same part. Unlike Stirling numbers of the first kind, they can be calculated using a one-sum formula:[2]

The Stirling numbers of the first kind may be characterized as the numbers that arise when one expresses powers of an indeterminate x in terms of the falling factorials[3]

(In particular, (x)0 = 1 because it is an empty product.)

Stirling numbers of the second kind satisfy the relation

Notation

Various notations have been used for Stirling numbers of the second kind. The brace notation was used by Imanuel Marx and Antonio Salmeri in 1962 for variants of these numbers.[4][5] This led Knuth to use it, as shown here, in the first volume of The Art of Computer Programming (1968).[6][7] According to the third edition of The Art of Computer Programming, this notation was also used earlier by Jovan Karamata in 1935.[8][9] The notation S(n, k) was used by Richard Stanley in his book Enumerative Combinatorics and also, much earlier, by many other writers.[6]

The notations used on this page for Stirling numbers are not universal, and may conflict with notations in other sources.

Relation to Bell numbers

Since the Stirling number counts set partitions of an n-element set into k parts, the sum

over all values of k is the total number of partitions of a set with n members. This number is known as the nth Bell number.

Analogously, the ordered Bell numbers can be computed from the Stirling numbers of the second kind via

[10]

Table of values

Below is a triangular array of values for the Stirling numbers of the second kind (sequence A008277 in the OEIS):

k
n
0 1 2 3 4 5 6 7 8 9 10
0 1
1 0 1
2 0 1 1
3 0 1 3 1
4 0 1 7 6 1
5 0 1 15 25 10 1
6 0 1 31 90 65 15 1
7 0 1 63 301 350 140 21 1
8 0 1 127 966 1701 1050 266 28 1
9 0 1 255 3025 7770 6951 2646 462 36 1
10 0 1 511 9330 34105 42525 22827 5880 750 45 1

As with the binomial coefficients, this table could be extended to k > n, but the entries would all be 0.

Properties

Recurrence relation

Stirling numbers of the second kind obey the recurrence relation

with initial conditions

For instance, the number 25 in column k = 3 and row n = 5 is given by 25 = 7 + (3×6), where 7 is the number above and to the left of 25, 6 is the number above 25 and 3 is the column containing the 6.

To prove this recurrence, observe that a partition of the objects into k nonempty subsets either contains the -th object as a singleton or it does not. The number of ways that the singleton is one of the subsets is given by

since we must partition the remaining n objects into the available subsets. In the other case the -th object belongs to a subset containing other objects. The number of ways is given by

since we partition all objects other than the -th into k subsets, and then we are left with k choices for inserting object . Summing these two values gives the desired result.

Another recurrence relation is given by

which follows from evaluating at .

Simple identities

Some simple identities include

This is because dividing n elements into n − 1 sets necessarily means dividing it into one set of size 2 and n − 2 sets of size 1. Therefore we need only pick those two elements;

and

To see this, first note that there are 2n ordered pairs of complementary subsets A and B. In one case, A is empty, and in another B is empty, so 2n − 2 ordered pairs of subsets remain. Finally, since we want unordered pairs rather than ordered pairs we divide this last number by 2, giving the result above.

Another explicit expansion of the recurrence-relation gives identities in the spirit of the above example.

Identities

The table in section 6.1 of Concrete Mathematics provides a plethora of generalized forms of finite sums involving the Stirling numbers. Several particular finite sums relevant to this article include.

Explicit formula

The Stirling numbers of the second kind are given by the explicit formula:

This can be derived by using inclusion-exclusion to count the surjections from n to k and using the fact that the number of such surjections is .

Additionally, this formula is a special case of the kth forward difference of the monomial evaluated at x = 0:

Because the Bernoulli polynomials may be written in terms of these forward differences, one immediately obtains a relation in the Bernoulli numbers:

The evaluation of incomplete exponential Bell polynomial Bn,k(x1,x2,...) on the sequence of ones equals a Stirling number of the second kind:

Another explicit formula given in the NIST Handbook of Mathematical Functions is

Parity

Parity of Stirling numbers of the second kind.

The parity of a Stirling number of the second kind is same as the parity of a related binomial coefficient:

where

This relation is specified by mapping n and k coordinates onto the Sierpiński triangle.

More directly, let two sets contain positions of 1's in binary representations of results of respective expressions:

One can mimic a bitwise AND operation by intersecting these two sets:

to obtain the parity of a Stirling number of the second kind in O(1) time. In pseudocode:

where is the Iverson bracket.

The parity of a central Stirling number of the second kind is odd if and only if is a fibbinary number, a number whose binary representation has no two consecutive 1s.[11]

Generating functions

For a fixed integer n, the ordinary generating function for Stirling numbers of the second kind is given by

where are Touchard polynomials. If one sums the Stirling numbers against the falling factorial instead, one can show the following identities, among others:

and

which has special case

For a fixed integer k, the Stirling numbers of the second kind have rational ordinary generating function

and have an exponential generating function given by

A mixed bivariate generating function for the Stirling numbers of the second kind is

Lower and upper bounds

If and , then

[12]

Asymptotic approximation

For fixed value of the asymptotic value of the Stirling numbers of the second kind as is given by

If (where o denotes the little o notation) then

[13]

A uniformly valid approximation also exists: for all k such that 1 < k < n, one has

where , and is the unique solution to .[14] Relative error is bounded by about .

Unimodality

For fixed , is unimodal, that is, the sequence increases and then decreases. The maximum is attained for at most two consecutive values of k. That is, there is an integer such that

Looking at the table of values above, the first few values for are

When is large

and the maximum value of the Stirling number can be approximated with

[12]

Applications

Moments of the Poisson distribution

If X is a random variable with a Poisson distribution with expected value λ, then its n-th moment is

In particular, the nth moment of the Poisson distribution with expected value 1 is precisely the number of partitions of a set of size n, i.e., it is the nth Bell number (this fact is Dobiński's formula).

Moments of fixed points of random permutations

Let the random variable X be the number of fixed points of a uniformly distributed random permutation of a finite set of size m. Then the nth moment of X is

Note: The upper bound of summation is m, not n.

In other words, the nth moment of this probability distribution is the number of partitions of a set of size n into no more than m parts. This is proved in the article on random permutation statistics, although the notation is a bit different.

Rhyming schemes

The Stirling numbers of the second kind can represent the total number of rhyme schemes for a poem of n lines. gives the number of possible rhyming schemes for n lines using k unique rhyming syllables. As an example, for a poem of 3 lines, there is 1 rhyme scheme using just one rhyme (aaa), 3 rhyme schemes using two rhymes (aab, aba, abb), and 1 rhyme scheme using three rhymes (abc).

Variants

r-Stirling numbers of the second kind

The r-Stirling number of the second kind counts the number of partitions of a set of n objects into k non-empty disjoint subsets, such that the first r elements are in distinct subsets.[15] These numbers satisfy the recurrence relation

Some combinatorial identities and a connection between these numbers and context-free grammars can be found in [16]

Associated Stirling numbers of the second kind

An r-associated Stirling number of the second kind is the number of ways to partition a set of n objects into k subsets, with each subset containing at least r elements.[17] It is denoted by and obeys the recurrence relation

The 2-associated numbers (sequence A008299 in the OEIS) appear elsewhere as "Ward numbers" and as the magnitudes of the coefficients of Mahler polynomials.

Reduced Stirling numbers of the second kind

Denote the n objects to partition by the integers 1, 2, ..., n. Define the reduced Stirling numbers of the second kind, denoted , to be the number of ways to partition the integers 1, 2, ..., n into k nonempty subsets such that all elements in each subset have pairwise distance at least d. That is, for any integers i and j in a given subset, it is required that . It has been shown that these numbers satisfy

(hence the name "reduced").[18] Observe (both by definition and by the reduction formula), that , the familiar Stirling numbers of the second kind.

See also

References

  1. ^ Ronald L. Graham, Donald E. Knuth, Oren Patashnik (1988) Concrete Mathematics, Addison–Wesley, Reading MA. ISBN 0-201-14236-8, p. 244.
  2. ^ "Stirling Numbers of the Second Kind, Theorem 3.4.1".
  3. ^ Confusingly, the notation that combinatorialists use for falling factorials coincides with the notation used in special functions for rising factorials; see Pochhammer symbol.
  4. ^ Transformation of Series by a Variant of Stirling's Numbers, Imanuel Marx, The American Mathematical Monthly 69, #6 (June–July 1962), pp. 530–532, JSTOR 2311194.
  5. ^ Antonio Salmeri, Introduzione alla teoria dei coefficienti fattoriali, Giornale di Matematiche di Battaglini 90 (1962), pp. 44–54.
  6. ^ a b Knuth, D.E. (1992), "Two notes on notation", Amer. Math. Monthly, 99 (5): 403–422, arXiv:math/9205211, Bibcode:1992math......5211K, doi:10.2307/2325085, JSTOR 2325085, S2CID 119584305
  7. ^ Donald E. Knuth, Fundamental Algorithms, Reading, Mass.: Addison–Wesley, 1968.
  8. ^ p. 66, Donald E. Knuth, Fundamental Algorithms, 3rd ed., Reading, Mass.: Addison–Wesley, 1997.
  9. ^ Jovan Karamata, Théorèmes sur la sommabilité exponentielle et d'autres sommabilités s'y rattachant, Mathematica (Cluj) 9 (1935), pp, 164–178.
  10. ^ Sprugnoli, Renzo (1994), "Riordan arrays and combinatorial sums" (PDF), Discrete Mathematics, 132 (1–3): 267–290, doi:10.1016/0012-365X(92)00570-H, MR 1297386
  11. ^ Chan, O-Yeat; Manna, Dante (2010), "Congruences for Stirling numbers of the second kind" (PDF), Gems in Experimental Mathematics, Contemporary Mathematics, vol. 517, Providence, Rhode Island: American Mathematical Society, pp. 97–111, doi:10.1090/conm/517/10135, MR 2731094
  12. ^ a b Rennie, B.C.; Dobson, A.J. (1969). "On stirling numbers of the second kind". Journal of Combinatorial Theory. 7 (2): 116–121. doi:10.1016/S0021-9800(69)80045-1. ISSN 0021-9800.
  13. ^ L. C. Hsu, Note on an Asymptotic Expansion of the nth Difference of Zero, AMS Vol.19 NO.2 1948, pp. 273--277
  14. ^ N. M. Temme, Asymptotic Estimates of Stirling Numbers, STUDIES IN APPLIED MATHEMATICS 89:233-243 (1993), Elsevier Science Publishing.
  15. ^ Broder, A. (1984). The r-Stirling numbers. Discrete Mathematics 49, 241-259
  16. ^ Triana, J. (2022). r-Stirling numbers of the second kind through context-free grammars. Journal of automata, languages and combinatorics 27(4), 323-333
  17. ^ L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 222.
  18. ^ A. Mohr and T.D. Porter, Applications of Chromatic Polynomials Involving Stirling Numbers, Journal of Combinatorial Mathematics and Combinatorial Computing 70 (2009), 57–64.

Read other articles:

Scandinavian dessert Tilslørte bondepiker / bondepige med slørÄnglamat / Tilslørte bondepiker Bondepige med slørTypeDessertPlace of originScandinaviaMain ingredientsMashed fruit (apples or plums), whipped cream, bread- or rusk crumbs  Media: Tilslørte bondepiker / bondepige med slør Verschleiertes Bauernmädchen served in a glass bowl Tilslørte bondepiker (lit. veiled peasant girls. Known in Swedish as änglamat; Danish: bondepige med slør; Norwegian: tilslørte bondepiker; Fin…

Gerd FaltingsGerd FaltingsLahir28 Juli 1954 (umur 69)Gelsenkirchen-Buer, Jerman BaratKebangsaanJermanAlmamaterUniversitas MünsterDikenal atas Konjektur Mordell Tinggi Faltings Teorema hasil kali Faltings PenghargaanMedali Fields (1986) Keanggotaan Guggenheim (1988)Penghargaan Leibniz (1996)Penghargaan Internasional Raja Faisal (2014) Penghargaan Shaw (2015) Medali Cantor (2017)Karier ilmiahBidangMatematikaInstitusiInstitut Max Planck untuk MatematikaUniversitas BonnUniversitas PrincetonUni…

Type of facial hair This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Chinstrap beard – news · newspapers · books · scholar · JSTOR (January 2017) (Learn how and when to remove this message) Paul Kruger with chinstrap beard General David Twiggs during the time of the Mexican–American War The chinstrap beard is …

2020年夏季奥林匹克运动会波兰代表團波兰国旗IOC編碼POLNOC波蘭奧林匹克委員會網站olimpijski.pl(英文)(波兰文)2020年夏季奥林匹克运动会(東京)2021年7月23日至8月8日(受2019冠状病毒病疫情影响推迟,但仍保留原定名称)運動員206參賽項目24个大项旗手开幕式:帕维尔·科热尼奥夫斯基(游泳)和马娅·沃什乔夫斯卡(自行车)[1]闭幕式:卡罗利娜·纳亚(皮划艇)[2…

莎拉·阿什頓-西里洛2023年8月,阿什頓-西里洛穿著軍服出生 (1977-07-09) 1977年7月9日(46歲) 美國佛羅里達州国籍 美國别名莎拉·阿什頓(Sarah Ashton)莎拉·西里洛(Sarah Cirillo)金髮女郎(Blonde)职业記者、活動家、政治活動家和候選人、軍醫活跃时期2020年—雇主內華達州共和黨候選人(2020年)《Political.tips》(2020年—)《LGBTQ國度》(2022年3月—2022年10月)烏克蘭媒體…

Sugino Engineering CorporationNama asli株式会社スギノエンジニアリングJenisPrivat KKIndustriProduk rekreasiDidirikan(1910; 114 tahun lalu (1910))KantorpusatKota Nara, Prefektur Nara 630-8144, JapanProdukKomponen sepeda seperti :ChainringsCranksetsSitus webSitus web resmi Crankset Sugino XD Sugino (株式会社スギノエンジニアリングcode: ja is deprecated , Kabushiki-gaisha Sugino Enjiniaringu) adalah produsen komponen sepeda off-road dan roadbike Jepang. Perusah…

ヨハネス12世 第130代 ローマ教皇 教皇就任 955年12月16日教皇離任 964年5月14日先代 アガペトゥス2世次代 レオ8世個人情報出生 937年スポレート公国(中部イタリア)スポレート死去 964年5月14日 教皇領、ローマ原国籍 スポレート公国親 父アルベリーコ2世(スポレート公)、母アルダその他のヨハネステンプレートを表示 ヨハネス12世(Ioannes XII、937年 - 964年5月14日)は、ロー…

عمارة العصور الوسطى هو مصطلح يستخدم لوصف الطرز المعمارية المختلفة التي كانت منتشرة في العصور الوسطى.[1][2] كاتدرائية بيزا والبرج المائل بإيطاليا, أحد معالم الفترة الرومانسيكية بأوروبا العمارة الدينية و هي عمارة الكنائس والكاتدرائيات التي كانت منتشرة بشكل كبير في هذ…

  لمعانٍ أخرى، طالع اتفاق باريس (توضيح). اتفاق باريس Accord de Parisمعلومات عامةالنوع معاهدة — بروتوكول بيئي جزء من اتفاقية الأمم المتحدة الإطارية بشأن التغير المناخي نسبة التسمية باريس التوقيع 12 ديسمبر 2015 (إقرار) 22 أبريل 2016 (توقيع)الموقعون  القائمة ... الصين[1] — روسيا[…

伊斯兰合作组织Organisation of Islamic Cooperation(英語)Organisation de la Coopération Islamique(法語)منظمة التعاون الإسلامي(阿拉伯語) 旗帜格言:To safeguard the interests and ensure the progress and well-being of Muslims  成员国  观察国  暂停会籍行政总部 沙地阿拉伯吉达 官方语言阿拉伯语英语法语类型宗教成员国57个在籍成员国(英语:Member states of the Organisation of …

تازة كند جمال خان تقسيم إداري البلد إيران  [1] إحداثيات 37°24′00″N 45°06′08″E / 37.4°N 45.1022°E / 37.4; 45.1022   الرمز الجغرافي 18506  تعديل مصدري - تعديل   تازة كند جمال‌ خان هي قرية في مقاطعة أرومية، إيران. عدد سكان هذه القرية هو 37 في سنة 2006.[2] مراجع ^   صفحة تازة ك…

Georgian square in London, England Fitzroy Square, view to the north from the Post Office Tower in 1967 The square in 2015 Entrance to 6 Fitzroy Square, headquarters of The Georgian Group A sculpture by Naomi Blake in Fitzroy Square Garden Virginia Woolf 1882-1941 Novelist and Critic lived here 1907–1911. Blue Plaque erected in 1974. Fitzroy Square is a Georgian square in London, England. It is the only one in the central London area known as Fitzrovia. The square is one of the area's main fea…

Habsburg siege and subsequent sack of Papal Rome For other uses, see Sack of Rome. This article includes a list of general references, but it lacks sufficient corresponding inline citations. Please help to improve this article by introducing more precise citations. (September 2021) (Learn how and when to remove this message) Sack of RomePart of the War of the League of CognacThe sack of Rome in 1527, by Johannes Lingelbach, 17th century (private collection)Date6 May 1527; 497 years agoLocationRo…

一中同表,是台灣处理海峡两岸关系问题的一种主張,認為中华人民共和国與中華民國皆是“整個中國”的一部份,二者因為兩岸現狀,在各自领域有完整的管辖权,互不隶属,同时主張,二者合作便可以搁置对“整个中國”的主权的争议,共同承認雙方皆是中國的一部份,在此基礎上走向終極統一。最早是在2004年由台灣大學政治学教授張亞中所提出,希望兩岸由一中各表的…

Online database about Australian literature AustLitHistory2000–LanguagesEnglish, Australian Aboriginal languagesAccessCostBy subscription; individuals may access it via their library. Limited guest access.CoverageDisciplinesAustralian literature: including criticism, bibliography, biographyGeospatial coverageAustraliaLinksWebsitewww.austlit.edu.au AustLit: The Australian Literature Resource (also known as AustLit: Australian Literature Gateway; and AustLit: The Resource for Australian Literatu…

Holocaust resource center in New Hampshire, US This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Cohen Center for Holocaust and Genocide Studies – news · newspapers · books…

Brazilian singer-songwriter For the Brazilian footballer, see Djavan (footballer). In this Portuguese name, the first or maternal family name is Caetano and the second or paternal family name is Viana. You can help expand this article with text translated from the corresponding article in Portuguese. (June 2024) Click [show] for important translation instructions. Machine translation, like DeepL or Google Translate, is a useful starting point for translations, but translators must revis…

Disambiguazione – Se stai cercando il film di Carlo Vanzina, vedi Via Montenapoleone (film). Via Monte NapoleoneNomi precedentiv. Storia LocalizzazioneStato Italia CittàMilano CircoscrizioneMunicipio 1 Codice postale20121 Informazioni generaliTipostrada commerciale e attrazione turistica Lunghezza460 m IntitolazioneTrae il nome dal Monte Napoleone, che aveva sede al civico 12 CollegamentiLuoghi d'interesseQuadrilatero della moda Trasporti Montenapoleone San Babila Mappa Modifica dat…

Series of children's novels by Jill Murphy This article is about the novel series. For other uses, see The Worst Witch (disambiguation). The Worst WitchThe covers from the first seven books, shown in publication order.The Worst WitchThe Worst Witch Strikes AgainA Bad Spell for the Worst WitchThe Worst Witch All at SeaThe Worst Witch Saves the DayThe Worst Witch to the RescueThe Worst Witch and the Wishing StarFirst Prize for The Worst WitchAuthorJill MurphyIllustratorJill MurphyCover artistJill …

Испарение и конденсация на границе раздела пар-жидкость. При насыщении пара установлено динамическое равновесие между конденсацией и испарением, при этом в среднем число молекул, влетающих в жидкость, равно числу молекул вылетающих из жидкость в единицу времени. Насы́ще…