In mathematics, Stirling numbers arise in a variety of analytic and combinatorial problems. They are named after James Stirling, who introduced them in a purely algebraic setting in his book Methodus differentialis (1730).[1] They were rediscovered and given a combinatorial meaning by Masanobu Saka in 1782.[2]
Two different sets of numbers bear this name: the Stirling numbers of the first kind and the Stirling numbers of the second kind. Additionally, Lah numbers are sometimes referred to as Stirling numbers of the third kind. Each kind is detailed in its respective article, this one serving as a description of relations between them.
A common property of all three kinds is that they describe coefficients relating three different sequences of polynomials that frequently arise in combinatorics. Moreover, all three can be defined as the number of partitions of n elements into k non-empty subsets, where each subset is endowed with a certain kind of order (no order, cyclical, or linear).
Stirling numbers express coefficients in expansions of falling and rising factorials (also known as the Pochhammer symbol) as polynomials.
That is, the falling factorial, defined as is a polynomial in x of degree n whose expansion is
with (signed) Stirling numbers of the first kind as coefficients.
Note that by convention, because it is an empty product. The notations for the falling factorial and for the rising factorial are also often used.[5] (Confusingly, the Pochhammer symbol that many use for falling factorials is used in special functions for rising factorials.)
Similarly, the rising factorial, defined as is a polynomial in x of degree n whose expansion is
with unsigned Stirling numbers of the first kind as coefficients.
One of these expansions can be derived from the other by observing that
Stirling numbers of the second kind express the reverse relations:
and
As change of basis coefficients
Considering the set of polynomials in the (indeterminate) variable x as a vector space,
each of the three sequences
is a basis.
That is, every polynomial in x can be written as a sum for some unique coefficients (similarly for the other two bases).
The above relations then express the change of basis between them, as summarized in the following commutative diagram:
The coefficients for the two bottom changes are described by the Lah numbers below.
Since coefficients in any basis are unique, one can define Stirling numbers this way, as the coefficients expressing polynomials of one basis in terms of another, that is, the unique numbers relating with falling and rising factorials as above.
Falling factorials define, up to scaling, the same polynomials as binomial coefficients: . The changes between the standard basis and the basis are thus described by similar formulas:
.
Example
Expressing a polynomial in the basis of falling factorials is useful for calculating sums of the polynomial evaluated at consecutive integers.
Indeed, the sum of falling factorials with fixed k can expressed as another falling factorial (for )
For example, the sum of fourth powers of integers up to n (this time with n included), is:
Here the Stirling numbers can be computed from their definition as the number of partitions of 4 elements into k non-empty unlabeled subsets.
In contrast, the sum in the standard basis is given by Faulhaber's formula, which in general is more complicated.
As inverse matrices
The Stirling numbers of the first and second kinds can be considered inverses of one another:
and
where is the Kronecker delta. These two relationships may be understood to be matrix inverse relationships. That is, let s be the lower triangular matrix of Stirling numbers of the first kind, whose matrix elements
The inverse of this matrix is S, the lower triangular matrix of Stirling numbers of the second kind, whose entries are Symbolically, this is written
Although s and S are infinite, so calculating a product entry involves an infinite sum, the matrix multiplications work because these matrices are lower triangular, so only a finite number of terms in the sum are nonzero.
The Lah numbers are sometimes called Stirling numbers of the third kind.[6]
By convention, and if or .
These numbers are coefficients expressing falling factorials in terms of rising factorials and vice versa:
and
As above, this means they express the change of basis between the bases and , completing the diagram.
In particular, one formula is the inverse of the other, thus:
Similarly, composing the change of basis from to with the change of basis from to gives the change of basis directly from to :
and similarly for other compositions. In terms of matrices, if denotes the matrix with entries and denotes the matrix with entries , then one is the inverse of the other: .
Composing the matrix of unsigned Stirling numbers of the first kind with the matrix of Stirling numbers of the second kind gives the Lah numbers: .
Enumeratively, can be defined as the number of partitions of n elements into k non-empty unlabeled subsets, where each subset is endowed with no order, a cyclic order, or a linear order, respectively. In particular, this implies the inequalities:
Inversion relations and the Stirling transform
For any pair of sequences, and , related by a finite sum Stirling number formula given by
for all integers , we have a corresponding inversion formula for given by
The lower indices could be any integer between and .
Abramowitz and Stegun give the following symmetric formulae that relate the Stirling numbers of the first and second kind.[9]
and
Stirling numbers with negative integral values
The Stirling numbers can be extended to negative integral values, but not all authors do so in the same way.[10][11][12] Regardless of the approach taken, it is worth noting that Stirling numbers of first and second kind are connected by the relations:
when n and k are nonnegative integers. So we have the following table for :
k
n
−1
−2
−3
−4
−5
−1
1
1
1
1
1
−2
0
1
3
7
15
−3
0
0
1
6
25
−4
0
0
0
1
10
−5
0
0
0
0
1
Donald Knuth[12] defined the more general Stirling numbers by extending a recurrence relation to all integers. In this approach, and are zero if n is negative and k is nonnegative, or if n is nonnegative and k is negative, and so we have, for any integers n and k,
On the other hand, for positive integers n and k, David Branson[11] defined and (but not or ). In this approach, one has the following extension of the recurrence relation of the Stirling numbers of the first kind:
,
For example, This leads to the following table of values of for negative integral n.
k
n
0
1
2
3
4
−1
1
1
1
1
1
−2
−3
−4
−5
In this case where is a Bell number, and so one may define the negative Bell numbers by .
^Concrete Mathematics exercise 13 of section 6. Note that this formula immediately implies the first positive-order Stirling number transformation given in the main article on generating function transformations.
^Olver, Frank; Lozier, Daniel; Boisvert, Ronald; Clark, Charles (2010). "NIST Handbook of Mathematical Functions". NIST Handbook of Mathematical Functions. (Section 26.8)
^Goldberg, K.; Newman, M; Haynsworth, E. (1972), "Stirling Numbers of the First Kind, Stirling Numbers of the Second Kind", in Abramowitz, Milton; Stegun, Irene A. (eds.), Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 10th printing, New York: Dover, pp. 824–825
Miksa, Francis L. (January 1956). "Stirling numbers of the first kind: 27 leaves reproduced from typewritten manuscript on deposit in the UMT File". Mathematical Tables and Other Aids to Computation: Reviews and Descriptions of Tables and Books. 10 (53): 37–38. JSTOR2002617.
Miksa, Francis L. (1972) [1964]. "Combinatorial Analysis, Table 24.4, Stirling Numbers of the Second Kind". In Abramowitz, Milton; Stegun, Irene A. (eds.). Handbook of Mathematical Functions (with Formulas, Graphs and Mathematical Tables). 55. U.S. Dept. of Commerce, National Bureau of Standards, Applied Math. p. 835.