Y indicates that the column's property is always true for the row's term (at the very left), while ✗ indicates that the property is not guaranteed in general (it might, or might not, hold). For example, that every equivalence relation is symmetric, but not necessarily antisymmetric, is indicated by Y in the "Symmetric" column and ✗ in the "Antisymmetric" column, respectively.
All definitions tacitly require the homogeneous relation be transitive: for all if and then
A term's definition may require additional properties that are not listed in this table.
In mathematics, an equivalence relation is a binary relation that is reflexive, symmetric and transitive. The equipollence relation between line segments in geometry is a common example of an equivalence relation. A simpler example is equality. Any number is equal to itself (reflexive). If , then (symmetric). If and , then (transitive).
Each equivalence relation provides a partition of the underlying set into disjoint equivalence classes. Two elements of the given set are equivalent to each other if and only if they belong to the same equivalence class.
Notation
Various notations are used in the literature to denote that two elements and of a set are equivalent with respect to an equivalence relation the most common are "" and "a ≡ b", which are used when is implicit, and variations of "", "a ≡Rb", or "" to specify explicitly. Non-equivalence may be written "a ≁ b" or "".
Definition
A binary relation on a set is said to be an equivalence relation, if and only if it is reflexive, symmetric and transitive. That is, for all and in
In relational algebra, if and are relations, then the composite relation is defined so that if and only if there is a such that and .[note 1] This definition is a generalisation of the definition of functional composition. The defining properties of an equivalence relation on a set can then be reformulated as follows:
Given a natural number , "is congruent to, modulo" on the integers.[2]
Given a function, "has the same image under as" on the elements of 's domain. For example, and have the same image under , viz. .
"Has the same absolute value as" on the set of real numbers
"Has the same cosine as" on the set of all angles.
Relations that are not equivalences
The relation "≥" between real numbers is reflexive and transitive, but not symmetric. For example, 7 ≥ 5 but not 5 ≥ 7.
The relation "has a common factor greater than 1 with" between natural numbers greater than 1, is reflexive and symmetric, but not transitive. For example, the natural numbers 2 and 6 have a common factor greater than 1, and 6 and 3 have a common factor greater than 1, but 2 and 3 do not have a common factor greater than 1.
The empty relationR (defined so that aRb is never true) on a set X is vacuously symmetric and transitive; however, it is not reflexive (unless X itself is empty).
The relation "is approximately equal to" between real numbers, even if more precisely defined, is not an equivalence relation, because although reflexive and symmetric, it is not transitive, since multiple small changes can accumulate to become a big change. However, if the approximation is defined asymptotically, for example by saying that two functions f and g are approximately equal near some point if the limit of f − g is 0 at that point, then this defines an equivalence relation.
Equality is both an equivalence relation and a partial order. Equality is also the only relation on a set that is reflexive, symmetric and antisymmetric. In algebraic expressions, equal variables may be substituted for one another, a facility that is not available for equivalence related variables. The equivalence classes of an equivalence relation can substitute for one another, but not individuals within a class.
A partial equivalence relation is transitive and symmetric. Such a relation is reflexive if and only if it is total, that is, if for all there exists some [proof 1] Therefore, an equivalence relation may be alternatively defined as a symmetric, transitive, and total relation.
A congruence relation is an equivalence relation whose domain is also the underlying set for an algebraic structure, and which respects the additional structure. In general, congruence relations play the role of kernels of homomorphisms, and the quotient of a structure by a congruence relation can be formed. In many important cases, congruence relations have an alternative representation as substructures of the structure on which they are defined (e.g., the congruence relations on groups correspond to the normal subgroups).
Each relation that is both reflexive and left (or right) Euclidean is also an equivalence relation.
Well-definedness under an equivalence relation
If is an equivalence relation on and is a property of elements of such that whenever is true if is true, then the property is said to be well-defined or a class invariant under the relation
A frequent particular case occurs when is a function from to another set if implies then is said to be a morphism for a class invariant under or simply invariant under This occurs, e.g. in the character theory of finite groups. The latter case with the function can be expressed by a commutative triangle. See also invariant. Some authors use "compatible with " or just "respects " instead of "invariant under ".
More generally, a function may map equivalent arguments (under an equivalence relation ) to equivalent values (under an equivalence relation ). Such a function is known as a morphism from to
Related important definitions
Let , and be an equivalence relation. Some key definitions and terminology follow:
A subset of such that holds for all and in , and never for in and outside , is called an equivalence class of by . Let denote the equivalence class to which belongs. All elements of equivalent to each other are also elements of the same equivalence class.
The set of all equivalence classes of by denoted is the quotient set of by If is a topological space, there is a natural way of transforming into a topological space; see Quotient space for the details.[undue weight? – discuss]
A partition of X is a set P of nonempty subsets of X, such that every element of X is an element of a single element of P. Each element of P is a cell of the partition. Moreover, the elements of P are pairwise disjoint and their union is X.
Counting partitions
Let X be a finite set with n elements. Since every equivalence relation over X corresponds to a partition of X, and vice versa, the number of equivalence relations on X equals the number of distinct partitions of X, which is the nth Bell numberBn:
A key result links equivalence relations and partitions:[5][6][7]
An equivalence relation ~ on a set X partitions X.
Conversely, corresponding to any partition of X, there exists an equivalence relation ~ on X.
In both cases, the cells of the partition of X are the equivalence classes of X by ~. Since each element of X belongs to a unique cell of any partition of X, and since each cell of the partition is identical to an equivalence class of X by ~, each element of X belongs to a unique equivalence class of X by ~. Thus there is a natural bijection between the set of all equivalence relations on X and the set of all partitions of X.
If and are two equivalence relations on the same set , and implies for all then is said to be a coarser relation than , and is a finer relation than . Equivalently,
is finer than if every equivalence class of is a subset of an equivalence class of , and thus every equivalence class of is a union of equivalence classes of .
is finer than if the partition created by is a refinement of the partition created by .
The equality equivalence relation is the finest equivalence relation on any set, while the universal relation, which relates all pairs of elements, is the coarsest.
The relation " is finer than " on the collection of all equivalence relations on a fixed set is itself a partial order relation, which makes the collection a geometric lattice.[8]
Generating equivalence relations
Given any set an equivalence relation over the set of all functions can be obtained as follows. Two functions are deemed equivalent when their respective sets of fixpoints have the same cardinality, corresponding to cycles of length one in a permutation.
An equivalence relation on is the equivalence kernel of its surjectiveprojection[9] Conversely, any surjection between sets determines a partition on its domain, the set of preimages of singletons in the codomain. Thus an equivalence relation over a partition of and a projection whose domain is are three equivalent ways of specifying the same thing.
The intersection of any collection of equivalence relations over X (binary relations viewed as a subset of ) is also an equivalence relation. This yields a convenient way of generating an equivalence relation: given any binary relation R on X, the equivalence relation generated by R is the intersection of all equivalence relations containing R (also known as the smallest equivalence relation containing R). Concretely, R generates the equivalence relation
if there exists a natural number and elements such that , , and or , for
The equivalence relation generated in this manner can be trivial. For instance, the equivalence relation generated by any total order on X has exactly one equivalence class, X itself.
Equivalence relations can construct new spaces by "gluing things together." Let X be the unit Cartesian square and let ~ be the equivalence relation on X defined by for all and for all Then the quotient space can be naturally identified (homeomorphism) with a torus: take a square piece of paper, bend and glue together the upper and lower edge to form a cylinder, then bend the resulting cylinder so as to glue together its two open ends, resulting in a torus.
Algebraic structure
Much of mathematics is grounded in the study of equivalences, and order relations. Lattice theory captures the mathematical structure of order relations. Even though equivalence relations are as ubiquitous in mathematics as order relations, the algebraic structure of equivalences is not as well known as that of orders. The former structure draws primarily on group theory and, to a lesser extent, on the theory of lattices, categories, and groupoids.
Group theory
Just as order relations are grounded in ordered sets, sets closed under pairwise supremum and infimum, equivalence relations are grounded in partitioned sets, which are sets closed under bijections that preserve partition structure. Since all such bijections map an equivalence class onto itself, such bijections are also known as permutations. Hence permutation groups (also known as transformation groups) and the related notion of orbit shed light on the mathematical structure of equivalence relations.
Let '~' denote an equivalence relation over some nonempty set A, called the universe or underlying set. Let G denote the set of bijective functions over A that preserve the partition structure of A, meaning that for all and Then the following three connected theorems hold:[10]
~ partitions A into equivalence classes. (This is the Fundamental Theorem of Equivalence Relations, mentioned above);
Given a partition of A, G is a transformation group under composition, whose orbits are the cells of the partition;[14]
Given a transformation group G over A, there exists an equivalence relation ~ over A, whose equivalence classes are the orbits of G.[15][16]
In sum, given an equivalence relation ~ over A, there exists a transformation groupG over A whose orbits are the equivalence classes of A under ~.
This transformation group characterisation of equivalence relations differs fundamentally from the way lattices characterize order relations. The arguments of the lattice theory operations meet and join are elements of some universe A. Meanwhile, the arguments of the transformation group operations composition and inverse are elements of a set of bijections, A → A.
Moving to groups in general, let H be a subgroup of some groupG. Let ~ be an equivalence relation on G, such that The equivalence classes of ~—also called the orbits of the action of H on G—are the right cosets of H in G. Interchanging a and b yields the left cosets.
Related thinking can be found in Rosen (2008: chpt. 10).
Categories and groupoids
Let G be a set and let "~" denote an equivalence relation over G. Then we can form a groupoid representing this equivalence relation as follows. The objects are the elements of G, and for any two elements x and y of G, there exists a unique morphism from x to yif and only if
The advantages of regarding an equivalence relation as a special case of a groupoid include:
Whereas the notion of "free equivalence relation" does not exist, that of a free groupoid on a directed graph does. Thus it is meaningful to speak of a "presentation of an equivalence relation," i.e., a presentation of the corresponding groupoid;
Bundles of groups, group actions, sets, and equivalence relations can be regarded as special cases of the notion of groupoid, a point of view that suggests a number of analogies;
In many contexts "quotienting," and hence the appropriate equivalence relations often called congruences, are important. This leads to the notion of an internal groupoid in a category.[17]
Lattices
The equivalence relations on any set X, when ordered by set inclusion, form a complete lattice, called ConX by convention. The canonical mapker : X^X → ConX, relates the monoidX^X of all functions on X and ConX. ker is surjective but not injective. Less formally, the equivalence relation ker on X, takes each function f : X → X to its kernelkerf. Likewise, ker(ker) is an equivalence relation on X^X.
Equivalence relations and mathematical logic
Equivalence relations are a ready source of examples or counterexamples. For example, an equivalence relation with exactly two infinite equivalence classes is an easy example of a theory which is ω-categorical, but not categorical for any larger cardinal number.
An implication of model theory is that the properties defining a relation can be proved independent of each other (and hence necessary parts of the definition) if and only if, for each property, examples can be found of relations not satisfying the given property while satisfying all the other properties. Hence the three defining properties of equivalence relations can be proved mutually independent by the following three examples:
Reflexive and transitive: The relation ≤ on N. Or any preorder;
Up to – Mathematical statement of uniqueness, except for an equivalent structure (equivalence relation)
Notes
^Sometimes the composition is instead written as , or as ; in both cases, is the first relation that is applied. See the article on Composition of relations for more information.
^If: Given let hold using totality, then by symmetry, hence by transitivity. — Only if: Given choose then by reflexivity.
^Weisstein, Eric W. "Equivalence Class". mathworld.wolfram.com. Retrieved 2020-08-30.
^Rosen (2008), pp. 243–45. Less clear is §10.3 of Bas van Fraassen, 1989. Laws and Symmetry. Oxford Univ. Press.
^Bas van Fraassen, 1989. Laws and Symmetry. Oxford Univ. Press: 246.
^Wallace, D. A. R., 1998. Groups, Rings and Fields. Springer-Verlag: 22, Th. 6.
^Wallace, D. A. R., 1998. Groups, Rings and Fields. Springer-Verlag: 24, Th. 7.
^Proof.[11] Let function composition interpret group multiplication, and function inverse interpret group inverse. Then G is a group under composition, meaning that and because G satisfies the following four conditions:
G is closed under composition. The composition of any two elements of G exists, because the domain and codomain of any element of G is A. Moreover, the composition of bijections is bijective;[12]
Composition associates. f(gh) = (fg)h. This holds for all functions over all domains.[13]
Let f and g be any two elements of G. By virtue of the definition of G, [g(f(x))] = [f(x)] and [f(x)] = [x], so that [g(f(x))] = [x]. Hence G is also a transformation group (and an automorphism group) because function composition preserves the partitioning of
^Wallace, D. A. R., 1998. Groups, Rings and Fields. Springer-Verlag: 202, Th. 6.
^Dummit, D. S., and Foote, R. M., 2004. Abstract Algebra, 3rd ed. John Wiley & Sons: 114, Prop. 2.
^Borceux, F. and Janelidze, G., 2001. Galois theories, Cambridge University Press, ISBN0-521-80309-8
Castellani, E., 2003, "Symmetry and equivalence" in Brading, Katherine, and E. Castellani, eds., Symmetries in Physics: Philosophical Reflections. Cambridge Univ. Press: 422–433.
Robert Dilworth and Crawley, Peter, 1973. Algebraic Theory of Lattices. Prentice Hall. Chpt. 12 discusses how equivalence relations arise in lattice theory.
Higgins, P.J., 1971. Categories and groupoids. Van Nostrand. Downloadable since 2005 as a TAC Reprint.
John Randolph Lucas, 1973. A Treatise on Time and Space. London: Methuen. Section 31.
Rosen, Joseph (2008) Symmetry Rules: How Science and Nature are Founded on Symmetry. Springer-Verlag. Mostly chapters. 9,10.
Raymond Wilder (1965) Introduction to the Foundations of Mathematics 2nd edition, Chapter 2-8: Axioms defining equivalence, pp 48–50, John Wiley & Sons.