Rumus integral lintasanmekanika kuantum adalah deskripsi dari teori kuantum yang menggeneralisasi prinsip aksimekanika klasik. Formula ini menggantikan gagasan klasik tunggal, lintasan unik klasik untuk sistem dengan penjumlahan atau integral fungsional, melalui ketakhinggaan kemungkinan lintasan kuantum mekanis untuk menghitung amplitudo kuantum.
Formulasi ini telah terbukti penting untuk perkembangan selanjutnya dari fisika teoretis, karena memanifestasikan kovarian Lorentz (sejumlah komponen ruang dan waktu yang memasuki persamaan dalam cara yang sama) lebih mudah untuk mencapainya daripada operator formalisme kanonik kuantisasi. Tidak seperti metode sebelumnya, lintasan-integral memungkinkan seorang fisikawan untuk dengan mudah mengubah koordinat antara deskripsi kanonik yang sangat berbeda dari sistem kuantum yang sama. Keuntungan lain yaitu bahwa dalam prakteknya lebih mudah untuk menebak bentuk Lagrangian yang benar dari sebuah teori, yang secara alami memasuki lintasan integral, dari Hamiltonian. Mungkin kelemahan dari pendekatan seperti itu bahwa unitaritas (hal ini terkait dengan konservasi dari probabilitas; probabilitas dari semua hasil fisik yang mungkin harus menambahkan satu) matriks-S secara eksplisit dalam perumusan. Pendekatan lintasan integral telah terbukti setara dengan formalisme lain mekanika kuantum dan teori ruang kuantum. Oleh karena itu, dengan menurunkan salah satu pendekatan dari sisi lain, masalah-masalah yang berhubungan dengan satu atau pendekatan lain (seperti yang dicontohkan oleh Lorentz kovarian atau unitaritas).
Lintasan integral juga berhubungan dengan kuantum dan proses stokastik, dan ini memberikan dasar untuk grand sintesis dari tahun 1970-an yang memadukan bidang teori kuantum dengan statistik teori lapangan yang berfluktuasi lapangan dekat orde kedua fase transisi. Dalam persamaan Schrödinger adalah persamaan difusi dengan imajiner difusi konstan, dan lintasan integral merupakan analisis lanjutan dari metode untuk menyimpulkan semua kemungkinan acak berjalan.
Tomé, Wolfgang A. (1998). Path Integrals on Group Manifolds. Singapore: World Scientific. ISBN981-02-3355-8. Discusses the definition of Path Integrals for systems whose kinematical variables are the generators of a real separable, connected Lie group with irreducible, square integrable representations.
Ryder, Lewis H. (1985). Quantum Field Theory. Cambridge University Press. ISBN0-521-33859-X. Highly readable textbook; introduction to relativistic QFT for particle physics.
Rivers, R. J. (1987). Path Integrals Methods in Quantum Field Theory. Cambridge University Press. ISBN0-521-25979-7.
Mazzucchi, S. (2009). Mathematical Feynman path integrals and their applications. World Scientific. ISBN978-981-283-690-8.
Albeverio, S.; Hoegh-Krohn. R. & Mazzucchi, S. (2008). Mathematical Theory of Feynman Path Integral. Lecture Notes in Mathematics 523. Springer-Verlag. ISBN9783540769569.
Johnson, Gerald W.; Lapidus, Michel L. (2002). The Feynman Integral and Feynman's Operational Calculus. Oxford Mathematical Monographs. Oxford University Press. ISBN0-19-851572-3.
Müller-Kirsten, Harald J. W. (2012). Introduction to Quantum Mechanics: Schrödinger Equation and Path Integral (edisi ke-2nd). Singapore: World Scientific.
Etingof, Pavel (2002). "Geometry and Quantum Field Theory". MIT OpenCourseWare. This course, designed for mathematicians, is a rigorous introduction to perturbative quantum field theory, using the language of functional integrals.