Kosmologi observasi adalah studi tentang struktur, evolusi, dan asal mula alam semesta melalui pengamatan, menggunakan instrumen seperti teleskop dan detektor sinar kosmik.
Observasi awal
Ilmu kosmologi fisik seperti yang dipraktikkan saat ini memiliki materi subjek yang didefinisikan pada tahun-tahun setelah debat Shapley-Curtis ketika ditentukan bahwa alam semesta memiliki skala yang lebih besar daripada galaksi Bima Sakti. Hal ini dipicu oleh pengamatan yang menentukan ukuran dan dinamika kosmos yang dapat dijelaskan oleh Teori Relativitas UmumAlbert Einstein. Pada masa pertumbuhannya, kosmologi adalah ilmu spekulatif yang didasarkan pada sejumlah pengamatan yang sangat terbatas dan dicirikan oleh perselisihan antara ahli teori keadaan tunak dan pendukung teori kosmologi Big Bang. Baru pada tahun 1990-an dan setelahnya, pengamatan astronomis mampu menyingkirkan teori-teori yang saling bersaing dan mendorong sains ke "Zaman Keemasan Kosmologi" yang digembar-gemborkan oleh David Schramm di sebuah kolokium National Academy of Sciences pada tahun 1992.[1]
Pengukuran jarak dalam astronomi secara historis telah dan terus dibuat heran oleh ketidakpastian pengukuran yang cukup besar. Secara khusus, sementara paralaks bintang dapat digunakan untuk mengukur jarak ke bintang terdekat, batas pengamatan yang ditentukan oleh sulitnya mengukur paralaks yang sangat kecil yang terkait dengan objek di luar galaksi kita menandakan bahwa para astronom harus mencari cara alternatif untuk mengukur jarak kosmik. Untuk tujuan ini, pengukuran lilin standar untuk variabel Cepheid ditemukan oleh Henrietta Swan Leavitt pada tahun 1908 yang akan memberi Edwin Hubble anak tangga pada tangga jarak kosmik yang ia perlukan untuk menentukan jarak ke nebula spiral. Hubble menggunakan Teleskop Hooker 100 inci di Observatorium Mount Wilson untuk mengidentifikasi bintang individu di galaksi tersebut, dan menentukan jarak ke galaksi dengan mengisolasi anggota individual Cepheid. Metode ini dengan tegas menetapkan nebula spiral sebagai objek yang jauh di luar galaksi Bima Sakti. Menentukan jarak ke "pulau alam semesta", sebagaimana mereka dijuluki di media populer ketika itu, menetapkan seberapa besar ukuran alam semesta dan menyelesaikan debat Shapley-Curtis untuk selamanya.[2]
Pada tahun 1927, dengan menggabungkan berbagai pengukuran, termasuk pengukuran jarak Hubble dan penentuan pergeseran merahVesto Slipher untuk objek-objek ini, Georges Lemaître adalah orang pertama yang memperkirakan konstanta proporsionalitas antara jarak galaksi dan apa yang disebut "kecepatan resesi" mereka, dan mendapatkan nilai sekitar 600 km/detik/Mpc.[3][4][5][6][7][8] Dia menunjukkan bahwa ini telah diperkirakan secara teoritis dalam model alam semesta berdasarkan relativitas umum.[3] Dua tahun kemudian, Hubble menunjukkan bahwa hubungan antara jarak dan kecepatan adalah berkorelasi positif dan memiliki kemiringan sekitar 500 km/detik/Mpc.[9] Korelasi ini kemudian dikenal sebagai hukum Hubble dan akan berfungsi sebagai landasan pengamatan untuk teori alam semesta yang meluas yang masih menjadi dasar dari kosmologi. Publikasi pengamatan oleh Slipher, Wirtz, Hubble, dan rekan-rekan mereka, dan penerimaan oleh ahli teori mengenai implikasi teoretis mereka dalam kejelasan teori relativitas umum Einstein dianggap sebagai awal dari ilmu kosmologi modern.[10]
Penentuan kelimpahan unsur kosmik memiliki sejarah sejak pengukuran spektroskopi pertama cahaya dari berbagai objek astronomi dan identifikasi garis emisi dan penyerapan yang sesuai dengan transisi elektron tertentu dalam unsur kimia yang diidentifikasi di Bumi. Misalnya, unsur Helium pertama kali diidentifikasi melalui tanda spektroskopiknya di Matahari sebelum diisolasi sebagai gas di Bumi.[11][12]
Menghitung kelimpahan relatif disa icapai melalui pengamatan spektroskopi yang berkorespondensi dengan pengukuran komposisi unsur meteorit .
Deteksi latar belakang gelombang mikro kosmik
Latar belakang gelombang mikro kosmik diprediksi pada tahun 1948 oleh George Gamow dan Ralph Alpher, dan oleh Alpher dan Robert Herman semenjak dikembangkannya model Big Bang panas. Selain itu, Alpher dan Herman mampu memperkirakan suhu,[13] namun hasilnya tidak banyak dibicarakan di tengah komunitas. Prediksi mereka ditemukan kembali oleh Robert Dicke dan Yakov Zel'dovich pada awal 1960-an dengan diperkenalkannya konsep radiasi CMB pertama yang diterbitkan sebagai fenomena yang dapat dideteksi muncul dalam makalah singkat oleh astrofisikawan SovietAG Doroshkevich dan Igor Novikov, pada musim semi 1964.[14] Pada tahun 1964, David Todd Wilkinson dan Peter Roll, rekan Dicke di Universitas Princeton, mulai membuat radiometer Dicke untuk mengukur latar belakang gelombang mikro kosmik.[15] Pada tahun 1965, Arno Penzias dan Robert Woodrow Wilson di lokasi Crawford Hill milik Bell Telephone Laboratories dekat Holmdel Township, New Jersey telah membuat radiometer Dicke yang akan mereka gunakan untuk eksperimen radio astronomi dan komunikasi satelit. Instrumen mereka memiliki kelebihan temperatur antena 3,5 K yang tidak dapat mereka ketahui dari mana asalnya. Setelah menerima telepon dari Crawford Hill, Dicke dengan terkenal menyindir: "Kawan, kita telah 'diciduk' " ("scooped", juga bermakna telah dipantau atau diliput).[16] Pertemuan antara kelompok Princeton dan Crawford Hill menetapkan bahwa suhu antena memang disebabkan oleh latar belakang gelombang mikro. Penzias dan Wilson menerima Hadiah Nobel Fisika 1978 untuk penemuan mereka.
Pengamatan modern
Hari ini, kosmologi observasi terus menguji prediksi kosmologi teoretis dan telah menghasilkan penyempurnaan model kosmologis. Misalnya, bukti pengamatan materi gelap sangat memengaruhi pemodelan teoretis pembentukan strukturdan galaksi. Saat mencoba mengalibrasi diagram Hubble dengan lilin standarsupernova yang akurat, bukti pengamatan energi gelap diperoleh pada akhir 1990-an. Pengamatan ini telah dimasukkan ke dalam kerangka kerja enam parameter yang dikenal sebagai model Lambda-CDM yang menjelaskan evolusi alam semesta dalam kaitannya dengan materi penyusunnya. Model ini kemudian telah diverifikasi oleh pengamatan rinci latar belakang gelombang mikro kosmik, khususnya melalui eksperimen WMAP .
Termasuk di sini adalah upaya pengamatan modern yang secara langsung mempengaruhi kosmologi.
Survei pergeseran merah
Dengan munculnya teleskop otomatis dan peningkatan spektroskop, sejumlah kolaborasi telah dilakukan untuk memetakan alam semesta di ranah atau ruang lingkup pergeseran merah. Dengan menggabungkan pergeseran merah dengan data posisi sudut, survei pergeseran merah memetakan distribusi materi 3D dalam bidang langit. Pengamatan ini digunakan untuk mengukur sifat struktur skala besar alam semesta. Tembok Besar, superkluster galaksi yang luasnya lebih dari 500 juta tahun cahaya, memberikan contoh dramatis dari struktur berskala besar yang dapat dideteksi oleh survei pergeseran merah.[17]
Survei pergeseran merah pertama adalah Survei Pergeseran Merah CfA, dimulai pada tahun 1977 dengan pengumpulan data awal diselesaikan pada tahun 1982.[19] Baru-baru ini, Survei Pergeseran Merah Galaksi 2dF menentukan struktur berskala besar dari satu bagian alam aemesta, mengukur nilai z di lebih dari 220.000 galaksi; pengumpulan data selesai pada tahun 2002, dan kumpulan data terakhir dirilis 30 Juni 2003.[20] Selain memetakan pola skala besar galaksi, 2dF menetapkan batas atas massa neutrino. Investigasi penting lainnya, Sloan Digital Sky Survey (SDSS), sedang berlangsung hingga saat ini, bertujuan untuk mendapatkan pengukuran pada sekitar 100 juta objek.[21] SDSS telah mencatat pergeseran merah galaksi sebesar 0,4, dan telah terlibat dalam pendeteksian quasar di luar z = 6. Survei Pergeseran Merah DEEP2 menggunakan teleskop Keck dengan spektograf "DEIMOS" baru; merupakan sebuah tindak lanjut dari program percontohan DEEP1, DEEP2 dirancang untuk mengukur galaksi redup dengan pergeseran merah 0,7 ke atas, dan oleh karena itu direncanakan untuk melengkapi SDSS dan 2dF.
Pengamatan teleskop
Radio
Sumber paling terang dari emisi radio frekuensi rendah (10 MHz dan 100 GHz) adalah galaksi radio yang dapat diamati hingga pergeseran merah yang sangat tinggi. Ini adalah bagian dari galaksi aktif yang telah memperluas sifatnya yang dikenal sebagai lobus dan pancaran yang memanjang jauh dari inti galaksi dalam skala megaparsec. Karena galaksi radio sangat terang, para astronom telah menggunakannya untuk mengukur jarak ekstrim dan masa awal evolusi alam semesta.
Sebuah survei infra merah tambahan, Two-Micron All Sky Survey, juga telah berperan dalam mengungkap distribusi galaksi, serupa dengan survei optik lainnya yang dijelaskan di bawah ini.
Adalah sebuah prediksi model Big Bang bahwa alam semesta dipenuhi dengan radiasi latar belakang neutrino, analog dengan radiasi latar belakang gelombang mikro kosmik. Latar belakang gelombang mikro adalah peninggalan dari saat alam semesta berusia sekitar 380.000 tahun, tetapi latar belakang neutrino adalah peninggalan dari saat alam semesta berusia sekitar dua detik.
Jika radiasi neutrino ini dapat diamati, itu akan menjadi jendela menuju tahap awal alam semesta. Sayangnya, neutrino ini sekarang menjadi sangat dingin, sehingga secara efektif tidak mungkin diamati secara langsung.
^Arthur M. Sackler Colloquia of the National Academy of Sciences: Physical Cosmology; Irvine, California: March 27–28, 1992.
^"Island universe" is a reference to speculative ideas promoted by a variety of scholastic thinkers in the 18th and 19th centuries. The most famous early proponent of such ideas was philosopher Immanuel Kant who published a number of treatises on astronomy in addition to his more famous philosophical works. See Kant, I., 1755. Allgemeine Naturgeschichte und Theorie des Himmels, Part I, J.F. Peterson, Königsberg and Leipzig.
^This popular consideration is echoed in Time Magazine's listing for Edwin Hubble in their Time 100 list of most influential people of the 20th Century.
^The Encyclopedia of the Chemical Elements, page 256