F检验F檢定 (F-test),亦稱聯合假設檢定(joint hypotheses test)、變異數比率檢驗、方差齐性检验。它是一种在零假设(null hypothesis, H0)之下,統計值服从F-分布的检验。其通常是用來分析用了超過一個參數的统计模型,以判斷該模型中的全部或一部分參數是否適合用來估計母體。 F检验這名稱是由美國數學家兼統計學家George W. Snedecor命名,为了纪念英國統計學家兼生物學家羅納德·費雪(Ronald Aylmer Fisher)。Fisher在1920年代發明了這個檢驗和F-分布,最初稱為變異數比率(Variance Ratio)[1]。 適用場合迴歸分析
注意事项F检验对于数据的非正态性非常敏感,因此在進行變異數同質性(homoscedasticity)檢定時,Levene检验, Bartlett检验或者Brown–Forsythe检验的稳健性都要优于F检验。 F检验还可以用于三组或者多组之间的均值比较,但是如果被检验的数据无法满足均是正态分布的条件时,该数据的稳健型会大打折扣,特别是当显著性水平比较低时。但是,如果数据符合正态分布,而且alpha值至少为0.05,该检验的稳健型还是相当可靠的。 若两个母体有相同的方差(方差齐性),那么可以采用F检验,但是该检验会呈现极端的非稳健性和非常态性[2][3],可以用t检验、巴特勒特检验等取代。 與其它統計值的關係
參見參考文獻
|
Index:
pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve
Portal di Ensiklopedia Dunia