测圆海镜《测圆海镜》是中国金代数学家李冶的代表作,于公元1248年写成。全书一共十二卷,由一百七十个问题组成。书中对勾股容圆的问题进行了探讨,系统地建立了“天元术”(列一元方程的方法)来解决几何问题。《测圆海镜》被认为是中国现存的第一部天元术著作。 天元术是对具体问题列出方程而后求解的方法。天元术于宋金时期开始发展,到元朝达到一个高峰。在《测圆海镜》问世之前,中国虽有以天人代表未知数用以布列方程和多项式的工作,但早期著作已失,仅存被引用的一些片段。李冶在《测圆海镜》中系统而概括地总结了天元术,用“天元”代替未知数,列出方程,然后求解。 内容《测圆海镜》由卷一的圆城图式、说明各个长度名称的总率名号、给出各个长度数值的今问正数、囊括了各个量之间关系的公式总集识别杂记;卷二至卷十二,共一百七十个问题及其解答所组成。书中一共有148问,182种方法是以天元术列出方程以求解,其中列出一次方程31个,二次方程106个,三次方程24个,四次方程20个,六次方程1个[1] 卷一圆城图式圆城图式(右图)是全书的总括图解,由一个直角三角形(古时称为勾股形)、它的内切圆以及一些特定的点和直线组成。其中的顶点、圆心和交点都用某个汉字来指代。最大的三角形的三个顶点分别是天、地、乾,天地乾三角形的内切圆圆心称为心。过心的垂直线从上至下分别和三角形、内切圆交于日、南、北三点。过心的水平线从左至右分别和三角形、内切圆交于川、东、西三点。过东的垂直线和过南的水平线都是内切圆的切线,它们分别交天地乾三角形于艮、坤、山、月四点,而相交于巽点。乾坤巽艮构成一个正方形。过月的垂直线交东西水平线于青点,交地乾边于泉点。过山的水平线交南北垂直线于朱点,交天乾边于金点。而这两条线相交于泛点。最后过日的水平线交天乾边于旦点,过川的垂直线交地乾边于夕点。总共22个点。 总率名号全书所研究的三角形一共有15个,全部是以天地线之间的线段为弦(斜边)的直角三角形。总率名号给出了这些三角形和线段的名称。它们分别是:
其中弦是三角形斜边,股是三角形的长直角边(这里是竖直的),勾是三角形短直角边(这里是水平的)。(代表通勾,代表通股,代表通弦,余类推)。 今问正数今问正数一节给出了圆城图式中每个线段的长度。其中以内切圆的半径为120步,作为标准。
例子:「通弦六百八十,勾三百二十,股六百;勾股和九百二十,较(兩者的差)二百八十;勾弦和一千,较三百六十;股弦和一千二百八十,较八十;弦较和九百六十,较四百;弦和和一千六百,较二百四十。」 15个勾股形中上高 = 下高;上平 = 下平,因此,15个勾股形中,只有13个勾股形是相异的。 《今问正数》共15个勾股形×13项=195项[2]。 ,列表如下。 识别杂记识别杂记都是关于不同线段之间的几何关系式。一共给出了692个公式。是全书的纲领。 识别杂记包含八项:
名目
杂用公式
五和五较此外还有诸弦,大小差,诸差,诸率互见,四位拾遗,拾遗。 一共692关系式,这些关系式完全是几何定理,与具体数值无关。 举例:第三条中“勾股和即弦黄和”一句就是:三角形两直角边之和等于斜边加上内切圆直径(“黄”指内切圆直径)。这个命题可以由直角三角形的勾股定理推出:
后面出现的各问题,都根据这些公式中的相等关系而列出方程,然后求解。 李冶的692个公式中,有8个是错误的,只是因为数值吻合而被误认为成立。 新设第一率新设第二率新设第三率新设第四率第二卷
从第二卷开始,《测圆海镜》中一共出现了一百七十个问题,它们都是围绕着同一个题设背景而展开。 在第二卷开头,李冶作出了以后题目公用的总假设:
这里的圆城就是指天地乾三角形的内切圆,其方向按照圆城图式里面东南西北四个点的位置而定(注意北在下方,东在左边,与现在通用的方位相反),所谓的“乾地”、“坤地”则是指圆城图式里面出现的乾点、坤点等等。以后的每个问题中要求的长度都是圆城的半径或直径。 接下来的问题都是已知某些线段的长度,问圆城的半径或直径。李冶在每一题的题目之后都先写出解法(代数演算),再给出演草(代入数值的计算)。
开头十个问题,不需要天元方程。清代数学李善兰认为,第一个问题和《九章算术》的勾股容圆题目一样,第二问至第十问就是《自序》中提到的“洞渊九容”[5]。但李冶原书或《四库全书》李锐较本都没有这九个问题的细草,李善兰在《天算或问》一书中根据相似三角形原理求得各式,并以第二问为例阐明如下[6]: 又因: 所以
其余类推。 。
从第十四题开始,引入天元术,将所求的未知量设为“天元”,然后根据识别杂记中给出的公式构造出两个天元式,另其相等,然后解方程得出答案。《测圆海镜》中天元式的次序,高次幂在常数项之上,和《益古演段》,《四元玉鉴》的相反。
“或问出西门南行四百八十步有树,出北门东行二百步见之。问答同前”。
内减天元半径得股圆差: 又置乙东行步在地,内减天元,得勾圆差: 以勾圆差增乘股圆差得半段黄方幂: 又置天元幂以倍之,也为半段黄方幂; 因此,得 相消得: 解方程,得半径。 第三卷
第四卷
。 第三卷边股问与第四卷同次第底勾问成对偶。
第五卷大股18问:已知。[8]
第六卷大勾18问:
第七卷明叀前18问;求直径d。[9]
第八卷
第十四问
草曰:[11] 已知
第九卷上:大斜四问[12]
第九卷下:大和8问
第十卷:三事和8问[14]
第十一卷
第十七问,十八问取自《洞淵算书》。
第十二卷
版本天元术并非李冶的独创,而是从金代起便在中国北方开始萌芽。据祖颐在《四元玉鉴后序》中的记载,李冶以前研究天元术的学者有北宋蒋周撰《益古集》、李文一撰《照胆》,石信道撰《钤经》、刘汝谐撰《如积释锁》等书,世人才知道有天元。此外朱世杰《四元玉鉴》引用北宋《洞渊九容细草》两道题,其中有“立天元一”[17]。后来李德载撰《两仪群英集臻》兼有地元。1306年元刻本《阴阳备用三元节要》三卷下有天元,地元[18]。但是这些早期天元术的著作已经失传。宋代《杨辉算法》保留蒋周《益古集》的一些条段法的题目,没保留天元术的内容。现存元刻本《阴阳备用三元节要》只有一条二元术题,《测圆海镜》是现存最早的系统地讲述天元术的著作。 到了明代,天元术因为艰深难懂而少人研究,几近失传。明代唐顺抄录过《测圆海镜》,但不懂天元术;顾应祥曾经撰写《测圆海镜分类释术》,但完全没有明白天元术中天元为未知数的含义,因而将《测圆海镜》中关于立天元列方程的演算全部删去,只留下用开方术解方程的过程,以便后人学习[19]。李俨认为宋金元发展起来的天元术至此已被遗忘[20]。《测圆海镜分类释术》一书,虽然删除了天元术内容,但保存了全部算题,也补入正确的几何学解法,使得几近失传的《测圆海镜》,得以从新流传[21]。 十八世纪时,随着西洋算学传入中国,李冶等人的天元术著作才被后来的数学家重新发现。戴东原从《永乐大典》中辑录出李冶《测圆海镜》[22];清朝梅瑴成(梅文鼎之孙)曾经研读元学士李冶的《测圆海镜》,对其中的天元之术感到不解,后来在研习西方的“借根方”法时发现所谓的“借根”就是“立天元”(都是设未知数),方才重新开始认识天元术[23][24]。之后,《四元玉鉴》等其它天元术著作也被重新认识。孔广森曾校对《测圆海镜》中的四章。乾隆三十八年(1773年),《四库全书》收录了李潢家藏本的《测圆海镜》。1798年,清代大藏书家鲍廷博刊印的《知不足斋丛书》中收录了李锐校勘的《测圆海镜细草》十二卷[25]。之后又有焦循和李锐在研究了《测圆海镜》、《益古演段》和《数书九章》后写的《天元一释》和《开方通释》两书,用较为明白的语言详细解释了李冶的天元术和秦九韶的正负开方术。1873年,张楚钟发表《测圆海镜通释》对《识别杂记》中的几百条定理,用几何方法逐条证明。 清代研究1896年刘岳云出版《测圆海镜解》,发现《圆城图式》中各线段的简单加减关系,发表《诸率加减表》,此后李善兰出版《测圆海镜解》等[26]。他在另一篇著作《天算或问》中给出勾股容圆各公式的统一公式。其后陈维祺发表《各率及较泛积表》将《识别杂记》用“泛积”概念统一表示[27]。王季同在《九容公式》中进一步发展了陈维祺的成果,发现[28]
国际研究19世纪初,朝鲜数学家南秉哲著《海镜细草解》。 1913年,法国学者L.van Hoe 介绍《测圆海镜》。1982年,法国林力娜(K. Chemla)作论文 Etude du Livre Reflects des Mesuers du Cercle sur la mer de Li Ye,获得博士学位。1983年,新加坡大学教授蓝丽蓉发表 Chinese Polynomial Equations in the Thirteenth Century,论述《测圆海镜》。 评价清代数学家对《测圆海镜》给予很高评价。阮元认为《测圆海镜》是“中土数学之宝书”,李善兰称赞它是“中华算书,无有胜于此者”。白尚恕说,《测圆海镜》的成就,超过同时期的印度,阿拉伯和欧洲,“处于世界数学里遥遥领先的地位”[29] 参考文献引用
来源
参见 |
Portal di Ensiklopedia Dunia