大二十面化截半二十面體(great icosified icosidodecahedron)又稱為大二十面截半二十面體(Great icosicosidodecahedron)[1]是一種星形均勻多面體,由20個正三角形、12個正五邊形和20個正六邊形組成[2][3],索引為U48,對偶多面體為大二十角星化六十面體[4],具有二十面體群對稱性,可以視為截角十二面体的刻面多面體[5],也可以視為是大雙三角十二面截半二十面體的邊刻面(edge-faceting)立體[6]。
大二十面化截半二十面體與大雙三角十二面截半二十面體相關,差別在於,在大二十面化截半二十面體中沒有十角星,但兩者所有的邊皆是相同的,在大雙三角十二面截半二十面體為十角星的位置是大二十面化截半二十面體的凹陷處[7]:137。
性質
大二十面化截半二十面體共由52個面、120條邊和60個頂點組成。[8]在其52個面中,有20個正三角形面、12個正五邊形面和20個正六邊形面[9]。在其60個頂點中,每個頂點都是2個正六邊形面、1個正三角形面和1個正五邊形面的公共頂點,並且這些面在構成頂角的多面角時,以正五邊形、六邊形面、反向相接的正三角形和六邊形面的順序排列,在頂點圖中可以用(5.6.3/2.6)[10]或(6.3/2.6.5)[9][11][12][8]或5,6,3/2,6[13]來表示。若將大二十面化截半二十面體作為一個簡單多面體,也就是將自相交的部分分離開來,則這個立體會有1232個外部面[11][14][15]。
表示法
大二十面化截半二十面體在考克斯特—迪肯符号中可以表示為[16]、(o5/3x3x5*a)[17]或(x5/4o3x3*a)[17],在威佐夫記號中可以表示為3/2 5 | 3[18][16][19][12][9]。
尺寸
若大二十面化截半二十面體的邊長為單位長,則其外接球半徑為:[4][3]
邊長為單位長的大二十面化截半二十面體,中分球半徑為:[3]
二面角
大二十面化截半二十面體有兩種二面角,分別為六邊形面和五邊形面的二面角以及六邊形面和三角形面的二面角。[3][6]
其中,六邊形面和五邊形面的二面角角度約為79.18768度:[3]
- 六邊形五邊形
而六邊形面和三角形面的二面角為5平方根的三分之一之反餘弦值,角度約為41.81度:[6]
- 六邊形三角形
分類
大二十面化截半二十面體的頂點圖為交叉梯形且具備點可遞的特性,同時,其存在自相交的面,因此大二十面化截半二十面體是一種自相交擬擬正多面體(Self-Intersecting Quasi-Quasi-Regular Polyhedra)。自相交擬擬正多面體一共有12種[20],除了小雙三角十二面截半二十面體外,其餘由阿爾伯特·巴杜羅(Albert Badoureau)於1881年發現並描述。[21]
相關多面體
大二十面化截半二十面體與截角十二面体共用相同的頂點布局[11]同時其亦與大雙三角十二面截半二十面體和大十二面二十面體共用相同的邊佈局。
參見
參考文獻
- ^ Jim McNeill. Uniform Polyhedra. orchidpalms.com. [2022-08-22]. (原始内容存档于2015-09-24).
- ^ Jonathan Bowers. Polyhedron Category 4: Trapeziverts. polytope.net. (原始内容存档于2021-03-02).
- ^ 3.0 3.1 3.2 3.3 3.4 David I. McCooey. Self-Intersecting Quasi-Quasi-Regular Polyhedra: Great Icosicosidodecahedron. [2022-08-22]. (原始内容存档于2022-08-22).
- ^ 4.0 4.1 Weisstein, Eric W. (编). Great Icosicosidodecahedron. at MathWorld--A Wolfram Web Resource. Wolfram Research, Inc. (英语).
- ^ Vera Viana. concave semiregular polyhedra. veraviana.net.
- ^ 6.0 6.1 6.2 Richard Klitzing. great icosicosidodecahedron, giid. bendwavy.org. [2022-08-22]. (原始内容存档于2021-09-24).
- ^ Wenninger, M.J. Polyhedron Models. Cambridge University Press. 1974 [2021-09-05]. ISBN 9780521098595. LCCN 69010200. (原始内容存档于2021-08-31).
- ^ 8.0 8.1 Maeder, Roman. 48: great icosicosidodecahedron. MathConsult. [2022-08-22]. (原始内容存档于2020-12-03).
- ^ 9.0 9.1 9.2 Zvi Har'El. Kaleido Data: Uniform Polyhedron #53, great icosicosidodecahedron. harel.org.il. 2006-11-14 [2022-08-14]. (原始内容存档于2022-08-22).
- ^ Kovič, J. Classification of uniform polyhedraby their symmetry-type graphs (PDF). Int. J. Open Problems Compt. Math. 2012, 5 (4) [2022-08-22]. (原始内容存档 (PDF)于2022-08-14).
- ^ 11.0 11.1 11.2 Robert Webb. Great Icosicosidodecahedron. software3d.com. [2022-08-22]. (原始内容存档于2022-08-22).
- ^ 12.0 12.1 Paul Bourke. Uniform Polyhedra (80). Math Consult AG. October 2004 [2019-09-27]. (原始内容存档于2013-09-02).
- ^ Jim McNeill. Uniform Polyhedra. orchidpalms.com. [2022-08-22]. (原始内容存档于2015-09-24).
- ^ D. A. Quadling. Inequalities and Optimal Problems in Mathematics and the Sciences. By G. Stephenson. Pp. viii, 166. £1·50. 1971. (Longman.). The Mathematical Gazette. 1972-10, 56 (397): 256–257 [2022-08-22]. ISSN 0025-5572. doi:10.2307/3617025 (英语).
- ^ D. A. Quadling. Mathematics Made Difficult. By Carl E. Linderholm. Pp. 207. £2·75. 1971. (Wolfe.). The Mathematical Gazette. 1972-10, 56 (397): 255–256 [2022-08-22]. ISSN 0025-5572. doi:10.2307/3617023 (英语).
- ^ 16.0 16.1 Klitzing, Richard. Axial-Symmetrical Edge-Facetings of Uniform Polyhedra (PDF). tic. 2002, 2 (4): 3 [2022-08-22]. (原始内容存档 (PDF)于2022-08-14).
- ^ 17.0 17.1 Richard Klitzing. Icosahedral Symmetries uniform polyhedra, Polytopes & their Incidence Matrices. bendwavy.org. [2022-08-07]. (原始内容存档于2018-07-07).
- ^ Eric W. Weisstein. Great Icosicosidodecahedron. archive.lib.msu.edu. 1999-05-25 [2022-08-22]. (原始内容存档于2021-11-29).
- ^ George W. Hart. Uniform Polyhedra --- List. [2022-08-22]. (原始内容存档于2018-09-19).
- ^ David I. McCooey. Self-Intersecting Quasi-Quasi-Regular Polyhedra. [2022-08-22]. (原始内容存档于2022-08-22).
- ^ Jean Paul Albert Badoureau. Mémoire sur les Figures Isocèles. Journal de l'École polytechnique. 1881, (49): 47–172.