梯形 |
---|
梯形 |
類型 | 四邊形 |
---|
對偶 | 平行四邊形 |
---|
邊 | 4 |
---|
頂點 | 4 |
---|
面積 | |
---|
特性 | 凸 |
---|
|
梯形(美式英语:trapezoid,英式英语:trapezium)是只有一组對邊平行的凸四邊形。梯形平行的兩條邊为底边,分別稱為上底和下底,其间的距離為高,不平行的两条边为腰。下底与腰的夹角为底角,上底与腰的夹角为顶角。有的也将梯形定义为有至少一组对边平等的凸四边形,從兒將平行四边形也视为一种梯形
性质
中位线
由梯形两腰的中点连成的线段称为梯形的中位线。梯形的中位线与上底和下底都平行,长度为上底与下底的长度之和的一半,即:
高
若為梯形的底邊,為梯形的兩腰,其中,則两个底之间的距离称为高,其长度为:
面積
梯形的面積满足:
其中,是梯形的高,和分别为其上底和下底。
事实上,由于中位线因此梯形面積亦满足:
其中 为中位线的长度。
以上两个公式均适用于任何梯形,也包括平行四边形。
边与角的关系
- 上下底边平行,因此上下邻角互为补角,度数和为180度。
- 对角线分割另一条对角线的比相同。
分类
等腰梯形
两腰长度相等的梯形称为等腰梯形,具有如下性质:
- 两条对角线相等。
- 同一底上的二内角相等。
- 对角互补,四顶点共圆。
依据以上性质,判定一个四边形是等腰梯形可以通过以下命题:
- 两条对角线相等的梯形是等腰梯形。
- 同一底上的二内角相等的梯形是等腰梯形。
- 四顶点共圆的梯形是等腰梯形。
直角梯形
一个底角为90°的梯形是直角梯形。由于梯形的二底边平行,因此根据同旁内角关系,直角梯形一腰上的两个底角都是90°。
正交梯形
对角线相互垂直的梯形是正交梯形。
圆外切梯形
存在内切圆的梯形称为圆外切梯形,此外还有圆外切等腰梯形和圆外切直角梯形子类型[1]。
参考文献