Функциональный типФункциональный тип (стрелочный тип, экспоненциал) в информатике — тип переменной или параметра, значением которой или которого может быть функция; либо тип аргумента или возвращаемого значения функции высшего порядка, принимающей или возвращающей функцию. Функциональный тип зависит от типов параметров и типа результата функции. Другими словами, это тип высшего рода, или, более точно, неприменённый конструктор типов «». В теоретических моделях и языках с поддержкой каррирования, например в просто типизированном лямбда-исчислении, функциональный тип зависит ровно от двух типов: области определения и области значений . В этом случае функциональный тип, следуя математической традиции, обычно записывают как (в практических языках программирования — Функциональный тип можно рассматривать как частный случай зависимого произведения типов. Среди прочих свойств, такое представление несёт в себе идею полиморфной функции. Языки программированияВ следующую таблицу сведён синтаксис, используемый в различных языках программирования для функциональных типов, а также соответствующие примеры сигнатуры типа для функции композиции функций.
Следует обратить внимание, что в примере на C# функция Денотационная семантикаФункциональный тип в языках программирования не соответствует пространству всех теоретико-множественных функций. Если принять счётно бесконечный тип натуральных чисел в качестве области определения и тип булевых чисел в качестве области значений, то существует несчётное количество ( — мощность континуума) теоретико-множественных функций между ними. Очевидно, это множество функций заведомо шире множества функций, определимых в языках программирования, так как существует лишь счётное множество программ (где программа представляет собой конечную цепочку из символов конечного набора). Денотационная семантика занимается поиском более подходящих моделей (называемых областями[англ.]), в том числе, для моделирования таких понятий языков программирования как функциональный тип. В денотационной семантике считается, что целесообразно не ограничиваться лишь вычислимыми функциями, а использовать любые непрерывные по Скотту функции на частично упорядоченных множествах, которыми возможно смоделировать также и незавершимые вычисления[англ.] (а таковые возникают во всяком полном по Тьюрингу языке). Средства теории областей, используемые в денотационной семантике, достаточно выразительны, например, непрерывной по Скотту функцией моделируется « См. также
Ссылки
|
Portal di Ensiklopedia Dunia