Уравнитель (математика)В математике уравнитель (также ядро разности) — это множество аргументов, в которых две или более функции имеют равные значения. Уравнитель - это множество решений некоторого (алгебраического, дифференциального и т. п.) уравнения. В определенных контекстах, ядро разности является уравнителем ровно двух функций. ОпределениеПусть X и Y - множества. Пусть f и g - функции, как от X, так и от Y. Тогда уравнитель f и g представляет собой множество элементов x из X таких, что f(x) равно g(x) в Y. Символически:
Уравнитель может обозначаться как Eq (f, g) или как вариация на эту тему (например, со строчными буквами "eq"). В неформальном контексте используется обозначение {f = g}. В приведенном выше определении использовались две функции f и g, но нет необходимости ограничиваться только двумя функциями или даже конечным числом функций. В общем случае, если F представляет собой множество функций от X до Y, то уравнитель членов F представляет собой множество элементов x из X таких, что при задании любых двух членов f и g из F, f(x) равно g(x) в Y. Символически:
Этот уравнитель может быть записан как Eq(f, g, h, ...), если F является множеством {f, g, h, ...}. В последнем случае можно также найти {f = g = h = ···} в неформальном контексте. Как вырожденный случай общего определения, пусть F - синглетон {f}. Поскольку f(x) всегда равно самому себе, уравнителем должна быть вся область X. В качестве еще более вырожденного случая пусть F - пустое множество. Тогда уравнитель снова является всей областью X, поскольку квантор всеобщности в определении бессодержательно верен. Ядро разницыДвоичный уравнитель (то есть уравнитель только двух функций) также называется ядром разности. Это может также обозначаться как DiffKer(f, g), Ker(f, g) или Ker(f − g). Последнее обозначение показывает, откуда взялась эта терминология и почему она наиболее распространена в контексте абстрактной алгебры: разностное ядро f и g − это просто ядро разностни f - g . Кроме того, ядро единственной функции f может быть восстановлено как разностное ядро Eq(f, 0), где 0 - постоянная функция с нулевым значением. Конечно, все это предполагает алгебраический контекст, в котором ядро функции является прообразом нуля при этой функции; это верно не во всех ситуациях. Однако термин "ядро разности" не имеет другого значения. В теории категорийУравнители могут быть определены универсальным свойством, которое позволяет обобщить понятие из категории множеств на произвольные категории. В общем контексте X и Y являются объектами, в то время как f и g являются морфизмами от X до Y. Эти объекты и морфизмы образуют диаграмму в рассматриваемой категории, а уравнитель - это просто предел (если он существует) этой диаграммы. Говоря более явно, уравнитель состоит из объекта E и такого морфизма , удовлетворяющему , что для любого морфизма , удовлетворяющему, существует единственный морфизм такой, что , для которого следующая диаграмма коммутативна: Говорят, что морфизм уравнивает и если . В любой универсальной алгебраической категории, включая категории, в которых используются ядра разности, а также саму категорию множеств, объект E всегда можно считать обычным понятием уравнителя, а морфизм eq в этом случае можно считать функцией включения E как подмножества X. Обобщение этого на более чем два морфизма является простым; просто используйте большую диаграмму с большим количеством морфизмов в ней. Вырожденный случай только одного морфизма также прост; тогда eq может быть любым изоморфизмом от объекта E до X. Правильная диаграмма для вырожденного случая без морфизмов немного сложна: можно изначально нарисовать диаграмму как состоящую из объектов X и Y и без морфизмов. Однако это неверно, поскольку пределом такой диаграммы является произведение X и Y, а не уравнитель. (И действительно, произведения и уравнители — это разные понятия: теоретико-множественное определение произведения не согласуется с теоретико-множественным определением уравнителя, упомянутого выше, следовательно, они на самом деле разные.) Вместо этого соответствующее понимание заключается в том, что каждая диаграмма уравнителя принципиально связана с X, включая Y только потому, что Y является областью значений морфизмов, которые появляются на диаграмме. С этой точки зрения мы видим, что если нет задействованных морфизмов, Y не появляется, и диаграмма уравнителя состоит только из X. Тогда пределом этой диаграммы является любой изоморфизм между E и X. Можно доказать, что любой уравнитель в любой категории является мономорфизмом. Если в данной категории выполняется обратное, то эта категория называется регулярной (в смысле мономорфизмов). В более общем смысле, регулярным мономорфизмом в любой категории является любой морфизм m, который является уравнителем некоторого множества морфизмов. Некоторые авторы более строго требуют, чтобы m было двоичным уравнителем, то есть уравнителем ровно двух морфизмов. Однако, если рассматриваемая категория является полной, то оба определения согласуются. Понятие ядра разности также имеет смысл в контексте теории категорий. Терминология "ядро разности" является общей во всей теории категорий для любого двоичного уравнителя. В случае предаддитивной категории (категории, обогащенной над категорией абелевых групп) термин "ядро разности" можно интерпретировать буквально, поскольку вычитание морфизмов имеет смысл. То есть, Eq(f, g) = Ker(f - g), где Ker обозначает теоретико-категориальное ядро. Любая категория с расслоёнными произведениями (коамальгамами) и произведениями имеет уравнители. Примеры
Смотрите также
Список литературы
|