Пространство ЛобачевскогоПространство Лобачевского, или гиперболическое пространство размерности — единственное полное односвязное -мерное риманово многообразие постоянной отрицательной кривизны, равной . Обычно обозначается или . Двумерное пространство Лобачевского называется плоскостью Лобачевского. Пространство Лобачевского является центральным объектом изучения геометрии Лобачевского и является одним из трёх пространств постоянной кривизны. Два других — евклидово пространство , имеющее нулевую кривизну, и сфера , имеющая единичную кривизну, — соответствуют евклидовой геометрии и геометрии Римана. Модели гиперболического пространстваПространство Лобачевского, которое независимо исследовали Николай Иванович Лобачевский и Янош Бойяи, является геометрическим пространством, аналогичным евклидову пространству, но в нём аксиома параллельности Евклида не выполняется. Вместо этого аксиома параллельности заменяется на следующую альтернативную аксиому (в пространстве размерности два):
Отсюда вытекает теорема, что существует бесконечно много таких прямых, проходящих через P. Аксиома не определяет однозначно плоскость Лобачевского с точностью до движения, поскольку нужно задать постоянную кривизну K < 0. Однако аксиома определяет плоскость с точностью до гомотетии, то есть с точностью до преобразований, которые без поворота меняют расстояния на некоторый постоянный множитель. Если можно выбрать подходящий масштаб длины, то можно предположить без потери общности, что K = −1. Можно построить модели пространств Лобачевского, которые могут быть вложены в плоские (то есть евклидовы) пространства. В частности, из существования модели пространства Лобачевского в евклидовом вытекает, что аксиома параллельности логически независима от других аксиом евклидовой геометрии. Существует несколько важных моделей пространства Лобачевского — модель Клейна, гиперболоидная модель, модель Пуанкаре в шаре и модель Пуанкаре в верхней полуплоскости. Все эти модели имеют одну и ту же геометрию в том смысле, что любые две из них связаны преобразованием, которое сохраняет все геометрические свойства описываемого ими гиперболического пространства. Гиперболоидная модельГиперболоидная модель реализует пространство Лобачевского как гиперболоид в . Гиперболоид является геометрическим местом точек, координаты которых удовлетворяют уравнению В этой модели прямая (то есть, по сути, геодезическая) — это кривая, образованная пересечением с плоскостью, проходящей через начало координат в . Гиперболоидная модель тесно связана с геометрией пространства Минковского. Квадратичная форма которая определяет гиперболоид, позволяет задать соответствующую билинейную форму Пространство , снабжённое билинейной формой B, является (n+1)-мерным пространством Минковского . Можно задать «расстояние» на гиперболоидной модели, определив[1] расстояние между двумя точками x и y на как Эта функция является метрикой, так как для неё выполнены аксиомы метрического пространства. Она сохраняется под действием ортохронной группы Лоренца O+(n,1) на . Следовательно, ортохронная группа Лоренца действует на как группа автоморфизмов, сохраняющих расстояние, то есть движений. Модель КлейнаАльтернативной моделью геометрии Лобачевского является определённая область в проективном пространстве. Квадратичная форма Минковского Q определяет подмножество , заданное как множество точек, для которых в однородных координатах x. Область Un является моделью Клейна пространства Лобачевского. Прямыми в этой модели являются открытые отрезки объемлющего проективного пространства, которые лежат в Un. Расстояние между двумя точками x и y в Un определяется как Это расстояние вполне определено на проективном пространстве, поскольку число не меняется при изменении всех координат на один и тот же множитель (с точностью до которого и определены однородные координаты). Эта модель связана с гиперболоидной моделью следующим образом. Каждая точка соответствует прямой Lx через начало координат в по определению проективного пространства. Эта прямая пересекает гиперболоид в единственной точке. Обратно: через любую точку на проходит единственная прямая, проходящая через начало координат (что есть точка в проективном пространстве). Это соответствие определяет биекцию между Un и . Это изометрия, поскольку вычисление d(x,y) вдоль воспроизводит определение расстояния в гиперболоидной модели. Модель Пуанкаре в шареИмеются две тесно связанные модели геометрии Лобачевского в евклидовой: модель Пуанкаре в шаре и модель Пуанкаре в верхней полуплоскости. Модель шара возникает из стереографической проекции гиперболоида в в гиперплоскость . Подробнее: пусть S будет точкой в с координатами (−1,0,0,…,0) — южным полюсом для стереографической проекции. Для каждой точки P на гиперболоиде пусть P∗ будет единственной точкой пересечений прямой SP с плоскостью . Это устанавливает биективное отображение в единичный шар в плоскости {x0 = 0}. Геодезические в этой модели являются полуокружностями, перпендикулярными границе сферы Bn. Изометрии шара образуются сферическими инверсиями относительно гиперсфер, перпендикулярных границе. Модель Пуанкаре в верхней полуплоскостиМодель верхней полуплоскости получается из модели Пуанкаре в шаре при применении инверсии с центром на границе модели Пуанкаре Bn (см. выше) и радиусом, равным удвоенному радиусу модели. Это преобразование отображает окружности в окружности и прямые (в последнем случае — если окружность проходит через центр инверсии) — и, более того, это конформное отображение. Следовательно, в модели верхней полуплоскости геодезическими являются прямые и (полу)окружности, перпендикулярные границе гиперплоскости. Гиперболические многообразияСогласно теореме Киллинга-Хопфа[англ.], любое полное односвязное риманово многообразие постоянной отрицательной кривизны изометрично пространству Лобачевского . В частности, универсальное накрывающее любого полного связного замкнутого риманова многообразия кривизны , то есть замкнутого гиперболического многообразия[англ.], изометрично пространству . Более того, любое такое многообразие изометрично факторпространству пространства Лобачевского по решетке без кручения в его группе изометрий SO+(n,1), которая изоморфна фундаментальной группе исходного пространства. Представление гиперболической поверхности в виде факторпространства плоскости Лобачевского по её фундаментальной группе называется её фуксовой моделью. Аналогичная конструкция для трёхмерных гиперболических пространств связана с понятием клейновых групп. Римановы поверхностиДвумерные гиперболические многообразия можно также понимать как римановы поверхности. Согласно теореме об униформизации, любая риманова поверхность является эллиптической, параболической, или гиперболической. См. также
Примечания
Литература
|