Primo de Mersenne é um número de Mersenne (número da forma Mn = 2n – 1, com "n" número natural) que também é um número primo. Nem todo número de Mersenne é primo: entre os números de Mersenne, com efeito, há aqueles que são primos; porém, além do número um, que é número de Mersenne (M1 = 1), porém não-primo, pois singular, há também números de Mersenne compostos.
Assim: M2 = 3, M3 = 7, M5 = 31, M7 = 127, M13 = 8.191, M17 = 131.071, M19 = 524.287... etc. formam a série de mersennes primos.
Mas: M0 = 0 (composto, par); M1 = 1 (singular, ímpar); M4 = 15, M6 = 63, M8 = 255, M9 = 511, M10 = 1.023, M11 = 2.047, M12 = 4.095... etc. (todos números compostos e ímpares), formam a série de mersennesnão-primos (o zero; o um; e os demais, compostos ímpares).
É o maior número primo conhecido. O número é um tipo especial de primo chamado primo de Mersenne que é da forma 2 elevado a alguma potência menos 1; neste caso, 2 136 279 841 - 1, que tem 41 024 320 dígitos. Assumindo 3 000 caracteres por página, imprimi-lo levaria mais de 13 000 páginas. O novo grande primo foi encontrado usando um algoritmo otimizado para rodar em unidades de processamento gráfico (GPUs) da NVIDIA, os poderosos chips usados em muitas aplicações de IA. Apenas 52 primos de Mersenne são conhecidos e, em notação binária, eles consistem em todos os 1s.[1]
História
Tabela de conjecturas de Mersenne: n ≤ 263
P: Mn é Mersenne prime —: Mn é o número composto de Mersenne Ciano: Mersenne tinha planejado Rosa: ele tinha planejado o oposto
n
2
3
5
7
11
13
17
19
Mn
P
P
P
P
—
P
P
P
n
23
29
31
37
41
43
47
53
Mn
—
—
P
—
—
—
—
—
n
59
61
67
71
73
79
83
89
Mn
—
P
—
—
—
—
—
P
n
97
101
103
107
109
113
127
131
Mn
—
—
—
P
—
—
P
—
n
137
139
149
151
157
163
167
173
Mn
—
—
—
—
—
—
—
—
n
179
181
191
193
197
199
211
223
Mn
—
—
—
—
—
—
—
—
n
227
229
233
239
241
251
257
263
Mn
—
—
—
—
—
—
—
—
Os registros históricos dão conta de que os números primos de Mersenne, como atualmente conhecidos, já eram considerados por Euclides de Alexandria (360 a.C. — 295 a.C.), o notável matemáticoplatônico, o criador da geometria euclidiana. Euclides, ao estudá-los, achou-lhes conexão com os números perfeitos. O nome atual, entretanto, veio em consequência dos estudos de Marin Mersenne, matemático francês que chegou a compilar uma lista de mersennes primos até o expoente 257. Verificou-se, posteriormente, que a lista era apenas parcialmente correta: em seu trabalho, ele omitiu M61, M89, M107 (que são primos), bem como incluiu impropriamente M67 e M257 (que são compostos). Não se tem informação de como Mersenne obteve essa lista e sua verificação rigorosa só foi levada a efeito mais de dois séculos depois.[1]
Um resultado elementar sobre os números de Mersenne afirma que se é um número primo, então n também é um número primo. Isso porque o polinômio é divisível pelo polinômio :[1]
e os dois fatores, para , são números maiores que 1.
Uma das questões em aberto na matemática é se existem finitos ou infinitos primos de Mersenne.
Uma outra propriedade é que sabendo que é divisível pelo polinómio podemos admitir que só com é que se podem obter números primos em expressões do tipo .
Recorde atual (2024)
O número é um tipo especial de primo chamado primo de Mersenne que é da forma 2 elevado a alguma potência menos 1; neste caso, 2 136 279 841 - 1, que tem 41 024 320 dígitos. Assumindo 3 000 caracteres por página, imprimi-lo levaria mais de 13 000 páginas. O novo grande primo foi encontrado usando um algoritmo otimizado para rodar em unidades de processamento gráfico (GPUs) da NVIDIA, os poderosos chips usados em muitas aplicações de IA. Apenas 52 primos de Mersenne são conhecidos e, em notação binária, eles consistem em todos os 1s.
Primos de Mersenne conhecidos
Abaixo esetão listados os números primos de Mersenne conhecidos, acompanhados dos descobridores e época. Nota-se que para os maiores primos de Mersenne somente por meio de computação assistida por artefatos construídos pelo gênio inventivo humano tem sido possível a descoberta. Para mais detalhes, ver Grupo de Busca dos Números Primos de Mersenne, Great Internet Mersenne Prime Search – GIMPS.
(*) A tabela acima não é discretamente exaustiva em todo o intervalo apresentado. Até agora ( domingo, 12 de janeiro de 2025 06h22min (UTC)), do que a tabela contém, sabe-se (por critérios algorítmicos de busca exaustiva) que todos os primeiros primos de Mersenne de M2 a M13.466.917 já foram identificados e são ali listados. Entretanto, entre os primos M25 964 951 e M57 885 161 (respetivamente, 42º e 48º elementos da lista), não se tem registro oficial de outros primos de Mersenne — o que não significa poder afirmar-se inequivocamente não os haja: os intervalos são cada vez maiores e as buscas são cada vez mais trabalhosas. Como exemplo histórico, cite-se que o 29.º primo de Mersenne foi descoberto somente após os 30º e 31º. É digno de nota que após a descoberta de M[46º], em apenas 14 dias descobriu-se um primo de Mersenne menor (M[45º], conforme acima citado).
Padrão de distribuição dos expoentes dos números primos de Mersenne módulo 12:[2]