2016(二千十六、二〇一六、にせんじゅうろく)は、自然数または整数において、2015の次で2017の前の数である。
性質
- 2016は合成数であり、約数は1, 2, 3, 4, 6, 7, 8, 9, 12, 14, 16, 18, 21, 24, 28, 32, 36, 42, 48, 56, 63, 72, 84, 96, 112, 126, 144, 168, 224, 252, 288, 336, 504, 672, 1008, 2016である。
- 約数を昇順に並べて和を求めていくと自身になる6番目の数である。1つ前は496、次は8128。(オンライン整数列大辞典の数列 A064510)
- 例.1 + 2 + 3 + 4 + 6 + 7 + 8 + 9 + 12 + 14 + 16 + 18 + 21 + … + 144 + 168 + 224 + 252 + 288 = 2016
- 2016 = 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10 + … + 62 + 63
- 63番目の三角数である。1つ前は1953、次は2080。
- 2016 = 741 + 1275
- 32番目の六角数である。1つ前は1891、次は2145。
- 405番目のハーシャッド数である。1つ前は2010、次は2020。
- 9を基とする102番目のハーシャッド数である。1つ前は2007、次は2025。
- 三角数がハーシャッド数になる29番目の数である。1つ前は1770、次は2080。
- 各位の立方和が平方数になる102番目の数である。1つ前は2013、次は2020。(23 + 03 + 13 + 63 = 225 = 152)(オンライン整数列大辞典の数列 A197039)
- 2016 = 25 × (26 − 1)
- n = 6 のときの 2n−1(2n − 1) の値とみたとき1つ前は496、次は8128。
- この形の数で完全数にならない3番目の数である。1つ前は120、次は32640。(オンライン整数列大辞典の数列 A144858)
- この形の数で倍積完全数にならない最小の数である。次は32640。
- 2016 = 32 × σ(32) (ただし σ は約数関数)
- 2016 = 25 × 32 × 7
- 連続する18個の素数の和で表せる20番目の数である。1つ前は1926、次は2108。
2016 = 71 + 73 + 79 + 83 + 89 + 97 + 101 + 103 + 107 + 109 + 113 + 127 + 131 + 137 + 139 + 149 + 151 + 157
- 2016 = 33 + 43 + 53 + 63 + 73 + 83 + 93
- 7連続整数の立方和とみたとき1つ前は1295、次は2989。
- 2016 = 25 + 26 + 27 + 28 + 29 + 210
- 2016 = 1728 + 288 = 123 + 11 + 22 + 33 + 44
- この形の1つ前は168、次は31680。(オンライン整数列大辞典の数列 A110371)
- 2016 = 42 + 82 + 442 = 42 + 202 + 402 = 122 + 242 + 362
- 2016 = 23 + 23 + 103 + 103 = 23 + 43 + 63 + 123
- 1/2016 = 0.00049603174… (下線部は循環節で長さは6)
- 2016 = 133 − 132 − 13 + 1
- 2016 = 452 − 9
- 2016 = 452 − (2 + 0 + 2 + 5)
- 2016 = 462 − 100
- 最小の友愛的三対を構成する数字の1つである(1980, 2016, 2556)。σ(1980)=σ(2016)=σ(2556)=6552=1980+2016+2556
- 約数の和が2016になる数は21個ある。(660, 672, 852, 858, 910, 940, 992, 1002, 1012, 1162, 1222, 1245, 1353, 1435, 1495, 1509, 1547, 1757, 1837, 1909, 1927) 約数の和21個で表せる2番目の数である。1つ前は1440、次は5184。
- 倍積完全数672の約数の和である。
- 倍積完全数の約数の和としては6番目の数である。1つ前は992、次は16256。
- 2016 = σ(496) + 210 = 992 + 1024 (ただし σ は約数関数)
- 2016 = σ2(496) (ただし σ は約数関数 σ2(496) = σ(992) = 2016)
- 2016 = σ2(15 + 25 + 35) (ただし σ は約数関数 σ2(15 + 25 + 35) = σ2(276) = σ(672) = 2016)
- 約数関数から導き出される数列 はその初期値によって異なる発散の仕方をするが、初期値 (1を除く) を6番目の数29とすると6番目が2016になる。
- (例. 29 → 30 → 72 → 195 → 336 → 992 → 2016)
- 連続してある数に対して約数の和を求めていった場合64個の数が2016になる。2016より小さい数で64個ある数はない。1つ前は1920 (56個)、次は2880 (68個)。いいかえると を満たす n が64個あるということである。(ただし σ は約数関数) (オンライン整数列大辞典の数列 A241954)
その他 2016 に関連すること
関連項目
|