逆数逆数(ぎゃくすう、英: reciprocal)とは、ある数に掛け算した結果が 1 となる数である。すなわち、数 x の逆数 y とは次のような関係を満たす。 通常、x の逆数は分数の記法を用いて 1/x のように表されるか、冪の記法を用いて x−1 のように表される。 1 を乗法に関する単位元と見れば、逆数とは乗法逆元(じょうほうぎゃくげん、英: multiplicative inverse)の一種であり、乗法逆元とは一般化された逆数である。 上述の式から明らかなように、x と y の役割を入れ替えれば、x は y の逆数であると言える。従って、x の逆数が y であるとき y の逆数は x である。 x が 0 である場合、任意の数との積は 0 になるため、(0 ≠ 1 であれば)0 に対する逆数は存在しない。 また、任意の x について必ずしもその逆数が存在するとは限らない。たとえば、自然数の範囲では上述の関係を満たす数は x = y = 1 以外には存在しない。0 を除く任意の数 x について逆数が常に存在するようなものには、有理数や実数、複素数がある。これらのように四則演算が自由にできる集合を体と呼ぶ。 逆数は乗法における逆元であるが、加法における逆元として反数がある。 1つの二項演算を持つ集合であって左右の逆元が常に存在するもの(代数的構造)はループと呼ばれる。 例以下に具体例をいくつか挙げる。ここで e はネイピア数、i は虚数単位、r は複素数の絶対値、θ は複素数の偏角を表す。また、z は複素数 z の共役複素数、|a| は数 a の絶対値を表す。
合同式での逆数→詳細は「モジュラ逆数」を参照
合同式において逆数を考えることができる。a × b を m で割ると 1 余るとき、b を a の m を法とする逆数と呼ぶ。合同式で表すと以下のようになる。 例えば、4 × 2 ≡ 1 (mod 7) となるので、法 7 において 2 は 4 の逆数である。通常の逆数と同様、逆数の逆数は同じ数であり、0 の逆数は存在せず、1 や −1 の逆数はそれ自身である。合同式の性質から、m の倍数の逆数は存在せず、(km ± 1) の逆数はそれ自身になる。 定義上、a は m と互いに素である必要がある。つまり、一般に合同式での逆数は存在するとは限らない。例えば、7 × b ≡ 1 (mod 42) や 12 × b ≡ 1 (mod 4) を満たす b は存在しない。 素数 p を法とする場合、0 以外の全ての元が逆数を持つ。法 17 を例とすると次のようになる。
合同式での逆数はオイラーの定理によって計算できる。a に逆数 b が存在するならば なので、 (ここで φ はオイラーのφ関数)であり、逆に a と m が互いに素であれば、この式によって逆数が与えられる。特に、m が素数の場合以下のようになる(フェルマーの小定理から直接導かれる)。 また、ユークリッドの互除法によっても効率的に求めることができる。定義式は、以下のベズーの等式(ディオファントス方程式の一種)が b と n について整数解を持つことと同値である。 この式の解は、a と m が互いに素である場合、かつその場合に限り存在する。 日本における学校教育日本の小学校では、小学6年生で分数の掛け算・割り算について学習する際に、逆数について学習し、x(実際には具体的な数を用いる)で割ることと 1/x を掛けることが同じ結果を得ることなどを学ぶ。この事は中学校の課程で、加法における逆元、つまり負の数について学ぶ準備になっている。 関連項目 |