反数反数(はんすう、英: opposite)とは、ある数に対し、足すと 0 になる数である。つまり、ある数 a に対して、
となるような数 b を a の反数といい、−a と表す。記号「−」を負号と呼び、「マイナス a」と読む。また、a は b の反数であるともいえる。0 は加法における単位元であるから、反数は加法における逆元である。このような加法における逆元は加法逆元(かほうぎゃくげん、英: additive inverse)と呼ばれる。 ある数にある数の反数を足すことを「引く」といい、減法 a − b を以下のように定義する。
「a 引く b」(b is subtracted from a) または「a マイナス b」(a minus b) と読む。反数に使われる「−」(負号)と引き算に使われる「−」(減算記号)をあわせて「マイナス記号」と呼ぶ。 また、反数を与える − は単項演算子と見なすことができ、単項マイナス演算子 (unary minus operator) と呼ばれる。一方、減算を表す演算子としての − は、項を 2 つとるの二項演算子なので、二項マイナス演算子 (binary minus operator) と呼ばれる。 乗法において反数に相当するものは逆数、あるいはより一般には乗法逆元 (multiplicative inverse) と呼ばれる。整数、有理数、実数、複素数においては、逆数は必ずしも存在しないが、反数は必ず存在する。ただし、0 を含まない自然数においては反数は常に存在しない。 反数の概念はそのままベクトルに拡張することができ、反ベクトル(はんベクトル、英: opposite vector)と呼ばれる。ベクトルの加法における単位元はゼロ・ベクトルであり、あるベクトル v に足すと 0 を与えるベクトル w を v の反ベクトルという。
これを満たすベクトル w は −v と表される。またこのとき v は w の反ベクトル −w でもある。 性質
例
関連項目 |