直交対角線四角形
直交対角線四角形(ちょっこうたいかくせんしかっけい、英: Orthodiagonal quadrilateral)とは、対角線が直交している四角形である[1]。 概要直交対角線四角形においては、向かい合う辺の長さの2乗の合計はもう一方の向かい合う辺の長さの2乗の合計と等しくなる[2][3]。 これは、ピタゴラスの定理からいえることである。これはまた、余弦定理、空間ベクトル、背理法、複素数の使用など、さまざまな方法で証明できる[4]。 別の特徴付けによると、凸四角形ABCDの対角線が直交することは、次の式が成り立つことに同値である。ただしPは対角線の交点である。 この等式は、Pの四角形の各辺への射影が共円四角形の頂点となることとも同値である[4]。 また、凸四角形の対角線が直交することは、そのヴァリニョンの平行四辺形(四角形の辺の中点を結んでできる平行四辺形)が長方形であることに同値である[4]。 面積直交対角線四角形の面積Kは、対角線pとqの長さの積の半分で求められる[5]。
逆に、この式で面積を計算できる凸四角形は、対角線が直交している[4]。 画像
脚注
関連項目 |
Index:
pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve
Portal di Ensiklopedia Dunia