五十一角形(ごじゅういちかくけい、ごじゅういちかっけい、pentacontahenagon)は、多角形の一つで、51本の辺と51個の頂点を持つ図形である。内角の和は8820°、対角線の本数は1224本である。
正五十一角形
正五十一角形においては、中心角と外角は7.058…°で、内角は172.941…°となる。一辺の長さが a の正五十一角形の面積 S は
を有理数と平方根で表すことが可能である。
以下のように定義すると
根号の内の2のべき乗以外の値はの和または差の2乗の組み合わせで求められる。
正五十一角形の作図
正五十一角形は定規とコンパスによる作図が可能な図形の一つである。
正五十一角形がコンパスと定規で作図できることは1796年にカール・フリードリヒ・ガウスが正十七角形がコンパスと定規で作図できることを発見したと同時に証明されたことになる。これは任意の三角関数において、その変数としての角が 2π/51 radのとき、関数の値が有理数と平方根の組み合わせのみで表現できることを意味する。
脚注
関連項目
外部リンク
ウィキメディア・コモンズには、
五十一角形に関連するカテゴリがあります。
|
---|
非古典的 (2辺以下) | |
---|
辺の数: 3–10 |
|
---|
辺の数: 11–20 | |
---|
辺の数: 21–30 | |
---|
辺の数: 31–40 | |
---|
辺の数: 41–50 | |
---|
辺の数: 51–70 (抜粋) | |
---|
辺の数: 71–100 (抜粋) | |
---|
辺の数: 101– (抜粋) | |
---|
無限 | |
---|
星型多角形 (辺の数: 5–12) | |
---|
多角形のクラス | |
---|
|