^Paul N. Swarztrauber:A parallel algorithm for computing the eigenvalues of a symmetric tridiagonal matrix,Math. Comp., Vol.60, No.202, (Apr.,1993), pp.651-668.
^ Sakurai, T., & Tadano, H. (2007). CIRR: a Rayleigh-Ritz type method with contour integral for generalized eigenvalue problems. Hokkaido mathematical journal, 36(4), 745-757.
^Tsutomu Ikegami, Tetsuya Sakurai and Umpei Nagashima: A Filter Diagonalization for Generalized Eigenvalue Problems Based on the Sakurai-Sugiura Projection Method, J. Compu. Appl. Math., Vol.233, No.8, pp.1927–1936 (2010).
^Anthony P. Austin and Lloyd N. Trefethen: Computing Eigenvalues of Real Symmetric Matrices with Rational Filters in Real Arithmetic, SIAM J. Sci. Comput, Vol.37, No.3, pp.A1365–A1387 (2015).
^Hiroshi Murakami: Filter Diagonalization Method by Using a Polynomial of a Resolvent as the Filter for a Real Symmetric-Definite Generalized Eigenproblem, in proceedings of EPASA2015, Springer, LNCSE-117, pp.205–232 (2018).
^Hiroshi Murakami: Filters Consist of a Few Resolvents to Solve Real Symmetric-Definite Generalized Eigenproblems, Japan J. Indust. Appl. Math., Vol.36, No.2, pp.579–618 (July 2019).
David S. Watkins (2008), The Matrix Eigenvalue Problem: GR and Krylov Subspace Methods, SIAM.
Saad, Y. (2011). Numerical methods for large eigenvalue problems: revised edition. SIAM.
Gene H. Golub and Charles F. Van Loan: "Matrix Computations", 3rd Edition, The Johns Hopkins University Press, ISBN 0-8018-5413-X(hard cover), ISBN 0-8018-5414-8(pbk), (1996).
Bai, Z., Demmel, J., Dongarra, J., Ruhe, A., & van der Vorst, H. (Eds.). (2000). Templates for the solution of algebraic eigenvalue problems: a practical guide. SIAM.
Lehoucq, R. B., Sorensen, D. C., & Yang, C. (1998). ARPACK users' guide: solution of large-scale eigenvalue problems with implicitly restarted Arnoldi methods. SIAM.
Wilkinson, J. H. (1965). The algebraic eigenvalue problem. Clarendon: Oxford.
Chatelin, F. (Ed.). (2012). Eigenvalues of Matrices: Revised Edition. SIAM.