べき乗法べき乗法(冪乗法、べきじょうほう)とはある行列の固有値のうち、絶対値最大のものを求める手法の総称であり、いくつかのバリエーションがある。累乗法とも呼ばれる。 典型的には、与えられた行列に対して、適当な初期ベクトルから始めて、逐次 を計算することで、がの絶対値最大の固有値に属する固有ベクトルの方向に漸近していくことを利用し、 により絶対値最大の固有値を得る。ただしベクトル列が定ベクトルに収束していくわけではないことに注意する。 また、べき乗法に類似した、絶対値最小の固有値を求める方法として逆べき乗法がある。 収束の証明簡単のため、行列の固有値がすべて互いに異なり であるとする。ここで、に属するの固有ベクトルをとすると、は をみたす。また、は互いに1次独立なので、初期ベクトルはこれらの1次結合により と表すことができる。ここで、とすれば、は以下のように表される。 仮定よりなので、のときは絶対値最大の固有値に属する固有ベクトルと同じ方向に近づいていく。
より、 となることを利用する。 行列の固有値が重複を持ち更に対角化可能でない場合も、ジョルダン標準形を考えれば同様の考え方で証明できる。 欠点最大固有値と、その次に大きい固有値の差が小さすぎる場合、収束が極めて遅くなる。 参考文献
関連項目 |
Index:
pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve
Portal di Ensiklopedia Dunia