Un nombreicosaédrique est un nombre figurépolyédrique comptant des points régulièrement répartis dans un icosaèdre régulier. Le nombre icosaédrique d'ordre n, correspondant au cas où il y a n points sur chaque arête de l'icosaèdre, est donné par la formule :
où sont les nombres de sommets, arêtes et faces de l'icosaèdre, son symbole de Schläfli : {nombre d'arêtes par face, nombre d'arêtes (et aussi de faces) par sommet} et le nombre k-gonal d'ordre n[2].
On obtient donc .
D'où .
Références
↑(en) Hyun Kwang Kim, « On Regular Polytope Numbers », PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, vol. 131, no 1, , p. 68 (lire en ligne)