Теорема Гаусса — Ванцеля

Теоре́ма Га́усса — Ва́нцеля стверджує, що правильний -кутник можна побудувати за допомогою циркуля й лінійки тоді і тільки тоді, коли , де  — різні прості числа Ферма. Ця умова також еквівалентна тому, що значення функції Ейлера є степенем двійки.

Історія

Античним геометрам були відомі способи побудови правильних n-кутників для

1796 року німецький математик Карл Фрідріх Гаусс показав можливість побудови правильних n-кутників при , де  — різні прості числа Ферма. 1836 року французький математик П'єр Ванцель довів, що інших правильних многокутників, які можна побудувати циркулем та лінійкою, не існує.

Конкретні реалізації побудови досить трудомісткі.

  • Побудова правильного 17-кутника була безпосередньо здійснена самим Гаусом, але вперше опублікована К. Ф. фон Пфейдерером 1802 року.
  • Правильний 257-кутник побудував Ф. Ю. Рішело 1832 року.
  • У бібліотеці Геттінгенського університету зберігається рукопис, який є підсумком 10-річної праці О. Гермеса, присвяченої методу побудови правильного 65537-кутника. З цього приводу англійський математик Джон Літлвуд пожартував[1]:

    Один нав’язливий аспірант дістав свого керівника, і той сказав йому: — Ходіть-но і розробіть спосіб побудови правильного 65537-кутника! Аспірант пішов і повернувся через двадцять років із рішенням.

Примітки

  1. Математическая смесь, Литлвуд Дж. web.archive.org. 25 квітня 2012. Архів оригіналу за 25 квітня 2012. Процитовано 12 травня 2024.{{cite web}}: Обслуговування CS1: bot: Сторінки з посиланнями на джерела, де статус оригінального URL невідомий (посилання) [Архівовано 2012-04-25 у Wayback Machine.]