Мікробні паливні елементи досліджуються і розвиваються в галузі біоенергетики та електрохімії і можуть мати потенціал для створення ефективних та сталих джерел енергії.[1]
Принцип роботи
Типовий мікробний паливний елемент складається з двох камер – анодної та катодної, які розділені йонообмінною мембраною. Анодна камера з електродом заповнюється субстратом разом з мікроорганізмами. В анодній камері має бути створено анаеробні (безкисневі) умови, а також передбачено газовідвід для видалення газоподібних продуктів життєдіяльності мікроорганізмів. Катодна камера з електродом заповнюється розчином електроліту, в ній створюються аеробні (кисневі) умови.
При споживанні субстрату мікроорганізмами в анаеробних умовах, разом з іншими продуктами метаболізму, в середовище анодної камери виділяються електрони та іони водню (протони). Електрони переносяться на електрод анодної камери безпосередньо з бактеріальної клітини або за допомогою медіаторів. Одночасно протони проходять через йонообмінну мембрану до катодної камери. Дифузія іонів H+ з анода на катод створює високий електрохімічний градієнт. В катодній камері відбувається відновлення кисню, прийом електронів і протонів, що сприяє дифузії іонів H+ з анода на катод. При замиканні кола електрони проходять через зовнішній контур від анода до катода, створюючи електричний струм.
Історія
Вперше продукування електроенергії мікроорганізмами було досліджено професором ботаніки Міхаелем Поттером у 1911 році. У серії простих експериментів він спостерігав, як дріжджіSaccharomyces cerevisiae продукували електроенергію метаболізуючи глюкозу або сахарозу. Поттер також виявив цей феномен з бактеріями Escherichia coli. Отримана напруга не перевищувала 0,5 В, не зважаючи на збільшення об’єму паливного елементу або розміру електроду.
У 1931 році Бернет Коен з’єднав між собою багато малих (об'ємом 10 мл) мікробних паливних елементів та отримав загальну напругу на рівні 35 В та силу струму 2 мА. Його установка була занадто складною для того, щоб отримати практичне застосування.
З розвитком космонавтики у 1960-х роках ідея отримання електроенергії за допомогою мікроорганізмів була знову відроджена. Було запропоновано використовувати мікробні паливні елементи при довготривалих космічних місіях для утилізації відходів людини з отриманням електроенергії.
У 1980-х роках важливим поштовхом в розробці мікробних паливних елементів стало додавання до системи медіаторів електронів (нейтральний червоний, метиленовий синій, хелат заліза тощо), які дозволили значною мірою підвищити вихідну напругу та силу струму.
Найбільш значимим етапом у досліджені мікробних паливних елементів наприкінці 20-го століття стало відкриття бактерій, здатних напряму передавати електрони на анод.
У 2020 році в Scientific Reports була опублікована статтяб що описує створення низьковольтного бустерного підсилювача, який є ефективним для збору енергії та накопичування енергії, для малопотужних мікробних паливних елементів.[5]
Мікробні паливні елементи (МПЕ) є унікальними електрохімічними пристроями, які використовують біологічні процеси для виробництва електроенергії. Нижче наведено список перспективних технологій та методик, що розвиваються в цій галузі:
Синтетична біологія для оптимізації мікроорганізмів: Використання синтетичкої біології для створення спеціалізованих мікроорганізмів, які мають покращені електрохімічні властивості та ефективність в МПЕ.[6][7][8]
Біоаноди та біокатоди другого покоління: Розробка біоанодів і біокатодів, які забезпечують вищу швидкість окислення та відновлення органічних сполук, підвищуючи виділення електроенергії.[9][10][11][12]
Використання екзоферментів: Впровадження зовнішніх ферментів, які допомагають у збільшенні робочого діапазону МПЕ та підвищенні ефективності.[13]
Матеріали для іонно-провідних мембран: Розробка нових іонно-провідних матеріалів, які підвищують швидкість передачі іонів у МПЕ і знижують внутрішні опори.[14][15][10][16][17]
Системи для керування та моніторингу: Розробка інтегрованих систем керування та моніторингу для оптимізації роботи МПЕ та забезпечення стабільності роботи.[18][19][20]
Біореактори для культури мікроорганізмів: Вдосконалення біореакторів для ефективного вирощування бактерій та археїв, які використовуються в МПЕ.[21]
Біодизайн електродів: Розробка нових матеріалів та дизайну електродів для підвищення каталітичної активності та стабільності МПЕ.[22][23]
Інтеграція з іншими відновлюваними джерелами енергії: Розробка систем, що дозволяють інтегрувати МПЕ з іншими джерелами відновлюваної енергії, такими як виробництво біоетанолу[24] та біоводню[25][26].
L. Benedict Bruno, Deepika Jothinathan, M. Rajkumar Microbial Fuel Cells: Fundamentals, Types, Significance and Limitations // Microbial Fuel Cell Technology for Bioelectricity / [Ed. by Venkataraman Sivasankar, Prabhakaran Mylsamy Kiyoshi Omine]. – Springer, 2018. – P. 23–48.
Kun Guo, Daniel J. Hassett, Tingyue Gu Microbial Fuel Cells: Electricity Generation from Organic Wastes by Microbes // Microbial Biotechnology: Energy and Environment / [Ed. by Rajesh Arora]. – CAB International, 2012. – P. 162–189.