Проект геному людини: цей міжнародний дослідницький проект, розпочатий в 1990 році та завершений в 2003 році, мав на меті скласти карту всього геному людини. Проект значно розкрив наше розуміння геному людини та стимулював розвиток нових технологій.[10]
Розвиток технологій секвенування наступного покоління в середині 2000-х років здійснив революцію в геноміці, різко збільшивши пропускну здатність і знизивши вартість.[11]
Геноміка — це дисципліна, яка керується кількома основними принципами, багато з яких відображають ширші принципи генетики, але застосовуються в масштабі всього геному.
Структура та організація геному
Геном кожного організму структурований і організований певним чином. Наприклад, в еукаріотів геноми організовані в хромосоми, які складаються з ДНК, щільно намотаної навколо білків гістонів. Ця організація впливає на експресію та функцію генів.[2]
Генетичні варіації
Геноми не статичні; вони можуть відрізнятися між особинами одного виду внаслідок мутації, генетичної рекомбінації та інших еволюційних процесів. Ця генетична варіація може впливати на риси організму і є основним предметом вивчення геноміки.[12]
Функціональна геноміка
Не всі ділянки геному кодують білки. Функціональні ділянки геному включають кодуючі ділянки (гени), регуляторні ділянки та некодуючі послідовності ДНК. Геноміка прагне зрозуміти функцію цих областей у контексті всього геному.[12]
Динаміка та еволюція геному
Геноми змінюються з часом, і ці зміни можна простежити в історії еволюції. Геноміка може дати розуміння цих еволюційних процесів і того, як вони сформували геноми сучасних організмів.[13]
Системна біологія
Геноміка діє в ширшому контексті системної біології, яка розглядає взаємодію між усіма частинами біологічної системи. Геномні дані можна використовувати для розуміння цих взаємодій і нових властивостей, які з них виникають.[14][15]
Аналіз даних і біоінформатика
Величезний обсяг даних, отриманих завдяки геномним дослідженням, потребує складного аналізу даних і методів біоінформатики. Ці методи використовуються для секвенування геномів, анотування генів, аналізу експресії генів та виконання інших обчислювальних завдань.[16]
Технології та методики
Розвиток геноміки значно сприяв розвитку технологій і методів, які зробили можливим секвенувати, аналізувати та маніпулювати геномами у великому масштабі.
Секвенування ДНК
Було розроблено декілька методів визначення порядку нуклеотидів у послідовності ДНК. Секвенування Сангера було одним із найперших методів, що використовувалися, і все ще використовується сьогодні для невеликих проектів.[7] Однак технології секвенування наступного покоління (NGS), такі як секвенування Illumina[en], піросеквенування та іонне напівпровідникове секвенування, значною мірою витіснили секвенування Сангера для великомасштабних проектів завдяки їх високій пропускній здатності.[17] Технології секвенування третього покоління, такі як секвенування Oxford Nanopore[en][18][19] та одномолекулярне секвенування в реальному часі[en] (SMRT або PacBio-секвенування)[20][21], пропонують секвенування в реальному часі та можливість секвенування більшої довжини зчитувань.
Геномна анотація та біоінформатика
Після секвенування генома його необхідно {{, щоб ідентифікувати гени та інші функціональні елементи. Це досягається за допомогою інструментів біоінформатики, які використовують обчислювальні алгоритми для прогнозування розташування та функцій генів.[22] Крім того, біоінформатика є невід’ємною частиною управління та аналізу великих наборів даних, створених геномними дослідженнями.[23]
Технології редагування генома
Такі методи редагування генома, як CRISPR-Cas9, TALEN і ZFN, використовуються для внесення специфічних змін у геном живих клітин.[24] Ці інструменти зробили революцію в геноміці, дозволивши дослідникам досліджувати функцію конкретних генів і створювати модельні організми з певними генетичними модифікаціями.[25]
Методи аналізу експресії генів
Ці методи використовуються для вимірювання рівнів експресії генів у геномі. Мікрочипи були однією з перших високопродуктивних технік, розроблених для цієї мети.[26] Зовсім недавно секвенування РНК (RNA-Seq) стало методом вибору завдяки своїй здатності вимірювати експресію генів з високою чутливістю та точністю, а також ідентифікувати нові транскрипти.[27]
Геномна медицина: геноміка зробила революцію в охороні здоров’я, уможлививши персоналізовану медицину. Геномні дані можуть допомогти передбачити сприйнятливість людини до певних захворювань, скласти плани лікування та полегшити стратегії профілактики захворювань.[28][29][30] (Див. такожМедична генетика)
Фармакогеноміка: це дослідження того, як гени впливають на реакцію людини на певні ліки. Розуміючи індивідуальні генетичні варіації, постачальники медичних послуг можуть призначати персоналізовані — більш ефективні та безпечні дози ліків.[31][32][33][34]
Геноміка захворювань: геномні технології забезпечили глибоке розуміння генетичної основи різних захворювань. Розуміння геномних змін, які, наприклад, викликають рак, може керувати діагностикою, прогнозом і лікуванням.[35][36]
Нутрігеноміка: це дослідження впливу харчових продуктів і харчових компонентів на експресію генів. Ця сфера зосереджена на виявленні та розумінні взаємодії на молекулярному рівні між поживними речовинами та іншими дієтичними біоактивними речовинами з геномом. Розуміння цих взаємодій може призвести до персоналізованих дієтичних рекомендацій і харчових втручань на основі персональних цілей щодо експерсії тих чи інших генів.[37][38][39] (Див. такожНутрігенетика)
Проект геному людини: цей монументальний проект, завершений у 2003 році, секвенував весь геном людини та проклав шлях до численних наукових досягнень у розумінні біології та хвороб людини.[10]
Розведення худоби: геноміка допомагає в розведенні тварин, дозволяючи відбирати тварин із бажаними ознаками, таким чином підвищуючи продуктивність і стійкість до хвороб.[47]
Екологія
Метагеноміка: це дослідження генетичного матеріалу, отриманого безпосередньо із зразків навколишнього середовища чи мікробіомів організмів. Це дозволяє дослідникам вивчати спільноти організмів у їхньому природному середовищі.
Екологічна геноміка: геноміка може допомогти зрозуміти, як організми взаємодіють із навколишнім середовищем, надаючи розуміння кліматичних змін, забруднення та інших екологічних проблем.[48]
Перспективні технології
У міру того як галузь геноміки продовжує розвиватися, кілька нових технологій обіцяють подальшу революцію в нашому розумінні геному.
Одноклітинна геноміка
Одноклітинна[en] геноміка дозволяє аналізувати геномний вміст окремих клітин. Ця технологія дає змогу зрозуміти генетичну та епігенетичну гетерогенність у тканинах і може виявити унікальну клітинну поведінку, яку можна усереднити під час масового аналізу.[49][50][51][52][53]
Геномні інструменти на основі CRISPR
Розробка систем CRISPR-Cas революціонізувала нашу здатність редагувати геноми. Крім того, адаптація цих систем дозволяє здійснювати цілеспрямовані модифікації та маніпуляції з епігеномом[54] (див. такожЕпігеноміка), транскриптомом[55] і навіть протеомом[56], таким чином розширюючи інструментарій, доступний геномним дослідникам.
Технології просторової геноміки поєднують геномну інформацію з просторовою інформацією про те, де в тканині чи клітині відбувається геномна активність. Ці методи дозволяють вивчати просторову організацію геномів у їхніх рідних контекстах, надаючи більш повне уявлення про геномну функцію.[59][60][61]
Геном. Автобіографія виду у 23 главах / М. Рідлі; [пер. з англ. О. Реви, З. Лобач]. — Київ: КМ-БУКС, 2018. — 408 с. — ISBN 617-7489-67-1.
Генетика людини: навчальний посібник для студентів вищих навчальних закладів. Сиволоб А. В., Рушковський С. Р. — Київ: «Академія», 2014. 325 с.
А. В. Сиволоб (2008). Молекулярна біологія(PDF). К: Видавничо-поліграфічний центр "Київський університет". с. 368-370. Архів оригіналу(PDF) за 4 березня 2016. Процитовано 27 березня 2016.
↑Culver, Kenneth W.; Mark A. Labow (8 листопада 2002). Genomics. У Richard Robinson (ed.) (ред.). Genetics. Macmillan Science Library. Macmillan Reference USA. ISBN0028656067.
↑ абAlberts, Bruce, ред. (2002). Molecular biology of the cell. Hauptbd (вид. 4. ed). New York: Garland. ISBN978-0-8153-3218-3.