Суперпростое числоСуперпростые числа (также известны как простые числа высшего порядка) — это подмножество простых чисел, стоящих в списке простых чисел на позициях, являющихся простыми числами (то есть это 2-е, 3-е, 5-е, 7-е, 11-е, 13-е, 17-е и т.д. по счёту простые числа). Первые члены последовательности суперпростых чисел: 3, 5, 11, 17, 31, 41, 59, 67, 83, 109, 127, 157, … (последовательность A006450 в OEIS). Робертом Дреслером (англ. Dressler, Robert E.) и Томасом Паркером (англ. Parker, S. Thomas) в своей статье англ. Primes with a prime subscript было доказано, что любое целое число большее 96 может быть представлено в виде суммы суперпростых чисел. Их доказательство использует лемму, напоминающую постулат Бертрана. Литература
|