В этом списке картографические проекции рассортированы по виду поверхности проектирования. Традиционно выделяют три категории проекций: цилиндрические, конические и азимутальные. Некоторые проекции трудно отнести к какой-либо из этих трёх категорий. С другой стороны, проекции можно классифицировать по характеристикам поверхности, которые они оставляют неизменными: направления, локальную форму, площадь и расстояние.
Термин «цилиндрическая проекция» используются по отношению к любой проекции, для которой меридианы проецируются в равноотстоящие вертикальные линии, а параллели — в горизонтальные линии.
Псевдоцилиндрические проекции представляют центральный меридиан и все параллели в виде отрезков прямых, проекции прочих меридианов не являются прямыми[1].
Азимутальные проекции сохраняют направления из центральной точки (и следовательно, большие окружности, проходящие через центральную точку, представлены прямыми на карте). Как правило, такие проекции также имеют радиальную симметрию масштабов, а значит и искажений: расстояния на карте из центральной точки вычисляются по функции r(d) от истинного расстояния d, независимо от угла; соответственно, круги с центром в центральной точке представлены кругами с центром в центральной точке на карте.
Полиэдрические проекции проецируют поверхность геоида на различные многогранные аппроксимации сферы. В качестве проекции на каждую грань часто используется гномоническая проекция, но некоторые картографы предпочитают равновеликую проекцию Фишера-Снайдера или равноугольную проекцию[2].
Гиперэллиптическая проекция Тоблера, семейство проекций, включающее особый случай проекции Мольвельде, Колиньона и других цилиндрических равновеликих проекций.
Асимметричная проекция Хатано: две разные псевдоцилиндрические проекции равной площади соединяются на Экваторе.
Многогранные равноплощадые карты обычно используют равновеликую проекция Ирвинга Фишера, в то время как большинство многогранных равноплощадых карт используют гномоническую прокцию.[6]
Равнопромежуточные
Равнопромежуточные проекции сохраняют расстояние между некоторыми стандартными точками или линиями.
Проекция Кассини[англ.] (в честь Кассини, Цезарь Франсуа, иногда проекция Кассини — Зольднера) — поперечная цилиндрическая проекция сохраняет масштаб вдоль центрального меридиана и всех линий, параллельных ему, и не является ни равновеликой, ни равноугольной[7].
Равнопромежуточная коническая проекция — локальные формы являются истинными вдоль стандартных параллелей, искажение постоянно вдоль любой данной параллели, но увеличивается по мере удаления от стандартных параллелей[8][9].
Проекция Вернера, сохраняющая расстояние до северного полюса и по кривой вдоль параллелей;