Органические сульфидыОрганические сульфиды (тиоэфиры) — соединения общей формулы R'-S-R, где R' и R — органические радикалы[1]. Серосодержащие аналоги простых эфиров. НоменклатураПри именовании сульфидов в номенклатуре IUPAC наиболее часто используется аддитивная номенклатура, в которой сульфиды рассматриваются как производные сероводорода и названия образуются добавлением суффикса -сульфид к названиям радикалов-заместителей, например, СН3SС2Н5 — метилэтилсульфид. В меньшей степени используется заменительная номенклатура, в которой сульфиды рассматриваются как гетерозамещенные алканы и названия образуются добавлением префикса тиа- к названию родоначального соединения, например, СН3SС2Н5 — 2-тиабутан. Иногда сульфиды именуются как тиоаналоги простых эфиров, в этом случае название образуется добавлением префикса тио- к названию кислородсодержащего аналога, например, C6H5SCH3 — тиоанизол. СвойстваНизшие сульфиды — бесцветные жидкости или легкоплавкие твёрдые вещества, нерастворимые в воде и хорошо растворимые в органических растворителях. Неочищенные тиоэфиры обладают характерным неприятным «сераорганическим» запахом, чистые — не пахнут. Температуры кипения сульфидов выше, чем у их кислородных аналогов — простых эфиров. Длина связи S-C в алифатических сульфидах составляет ~0,18 нм, в диарилсульфидах длина связи уменьшена до ~0,175 нм за счет частичного сопряжения свободной электронной пары атома серы с π-электронами ароматического ядра. Величина валентного угла С—S—С у пространственно незатрудненных сульфидов ~100° (98,9° у диметилсульфида) и растет по мере роста объема заместителей (105,6° у бис-(трифторметил)сульфида, 109° у дифенилсульфида). В ИК-спектрах характеристическая полоса валентных колебаний связи S-C находится в области 570—705 см−1, интенсивность полосы алкилсульфидов мала, в случае арил- и винилсульфидов интенсивность средняя. Для метилсульфидов характерна полоса при 1325 см−4 деформационных колебаний связей C-H фрагмента CH3S. В УФ-спектрах алкилсульфидов наблюдаются полосы поглощения при 200, 220 и 240 нм, в случае винил- и арилсульфидов благодаря сопряжению с двойными связями или ароматической системой они претерпевают батохромный сдвиг в области 205—230, 235—270, 275—300 нм. Реакционная способностьБольшая поляризуемость и меньшая электроотрицательность серы по сравнению с кислородом обуславливает меньшую основность и большую нуклеофильность серы сульфидов по сравнению с простыми эфирами. Так, сульфидный заместитель RS, в ароматическом ядре, как и в случае RO, активирует его в реакциях электрофильного замещения и ориентирует вступающие заместители в орто- и пара-положения. Сульфиды значительно легче алкилируются, чем простые эфиры, образуя сульфониевые соли под действием алкилйодидов, алкилсульфатов, оксониевых солей и других алкилирующих агентов: Под действием мягких окислителей (перекись водорода в ацетоне или ледяной уксусной кислоте, надкислоты) сульфиды окисляются до сульфоксидов: при действии энергичных окислителей (перманганат калия, азотная кислота) окисление идет до сульфонов: Эти реакции используются в качестве препаративного метода синтеза сульфоксидов и сульфонов. Связь С-S значительно лабильней связи С-O, поэтому для сульфидов, в отличие от простых эфиров, характерны реакции с разрывом связи С-S. Так, арилалкилсульфиды под действием хлора или брома в присутствии воды образуют арилсульфонилгалогениды: При действии восстановителей (алюмогидрид лития, борогидрид натрия, натрий в жидком аммиаке) происходит расщепление связи C-S c образованием тиола и углеводорода: Направление и легкость расщепления определяются природой заместителей. Под действием хлора сульфиды образуют нестабильные сульфониевые соли, расщепляющиеся на сульфенилхлорид и галогенид: В этом случае происходит отщепление и образование хлорида с участием радикала, образующего наиболее стабильный карбокатион. СинтезБольшинство препаративных методов синтеза сульфидов основано на функционализации легкодоступных высоконуклеофильных тиолов в реакциях нуклеофильного замещения или присоединения, при этом выделяется два основных подхода — алкилирование либо арилирование тиолатов щелочных металлов и присоединение тиолов к кратным связям алкенов и алкинов. Сульфиды также могут быть синтезированы из электрофильных галогенидов серы или производных сульфеновых кислот присоединением к алкенам или сульфенилированием ароматических соединений. Сульфиды из тиоловВ качестве алкилирующих агентов при реакциях с тиолатами используются алкилгалогениды, диалкилсульфаты и сульфонаты (обычно тозилаты), в реакцию вступают также активированные электронакцепторными заместителями арилгалогениды: β: X = Hal, AlkOSO3, ArSO3, Ar Частным случаем такого подхода является алкилирование сульфидов щелочных металлов, идущее через образование тиолятов, этот метод используется при синтезе симметричных сульфидов: Для синтеза диарилсульфидов арилтиоляты арилируют соответствующими диазониевыми солями: Присоединение тиолов к кратным связям алкенов в условиях кислотного катализа идет по ионному механизму аналогично присоединению спиртов и подчиняется правилу Марковникова, в случае синтеза симметричных сульфидов вместо тиолов может быть использован сероводород: В присутствии пероксидов или при облучении ультрафиолетом присоединение идет по радикальному механизму и дает смесь продуктов с преобладанием стерически наименее затрудненного: В случае активированных электроноакцепторами алкенов (акрилонитрил, винилкетоны и т. п.) присоединение тиолов протекает в щелочных условиях и приводит к продукту присоединения в β-положение к акцепторному заместителю по типу реакции Михаэля: Сульфиды из галогенидов серы и производных сульфеновых кислотДихлорид серы присоединяется к алкенам с образованием бис-(β-хлоралкил)сульфидов, так, например, присоединением дихлорида серы к этилену был впервые синтезирован иприт[2]: Сульфенилхлориды также присоединяются к алкенам с образованием β-хлоралкилсульфидов: Ароматическе соединения при катализе кислотами Льюиса и CH-кислоты в присутствии оснований сульфенилируются сульфенилхлоридами с образованием сульфидов: Дитиодихлорид присоединяется к алкенам и алкинам, при этом с хорошими выходами образуются симметричные α-хлоралкилдисульфиды[3]: C активированными ароматическими и гетероароматическими соединениями идет реакция замещения, в результате которой также образуются дисульфиды[3]: В свою очередь, дисульфиды могут быть десульфуризованы под действием оснований, Льюисовых кислот (BF3, SbF5), соединений трехвалентного фосфора (PR3, P(OR)3) либо, в некоторіх случаях, при нагреве: Примером такой десульфуризации, протекающей in situ, является взаимодействие неактивированных ароматических углеводородов с дитиодихлоридом в присутствии хлорида алюминия. Так, например, реакция с бензолом сопровождается отщеплением серы и ведет к образованию дифенилсульфида[4]: Биологическая рольТиоэфирная группа входит в состав важных биологических соединений — витамина B7 и незаменимой аминокислоты метионина. Тиоэфиры содержатся в составе чеснока, обусловливая его специфический вкус. См. такжеСсылки
Примечания
|