Ло́ренц-ковариа́нтность — свойство систем математических уравнений, описывающих физические законы, сохранять свой вид при применении преобразований Лоренца[1]. Более точно, всякий физический закон должен представляться релятивистски инвариантной системой уравнений, то есть инвариантной относительно полной ортохронной неоднородной группы Лоренца[2]. Принято считать, что этим свойством должны обладать все физические законы, и экспериментальных отклонений от него не обнаружено.
Лоренц-ковариантность физических законов — конкретизация принципа относительности (то есть постулируемого требования независимости результатов физических экспериментов и записи уравнений от выбора конкретной системы отсчёта). Исторически эта концепция стала ведущей при включении в сферу действия принципа относительности (раньше формулировавшегося с применением не преобразования Лоренца, а преобразования Галилея) максвелловской электродинамики, уже тогда лоренц-ковариантную и не имевшую видимых возможностей переделки для ковариантности относительно преобразований Галилея, что привело к распространению требования лоренц-ковариантности и на механику и вследствие этого к изменению последней.
Преобразования Лоренца удобно рассматривать как вращения и специальные преобразования в четырёхмерном пространстве и использовать для их описания векторный и тензорный анализ. Благодаря этому запись систем математических уравнений, описывающих законы природы, в векторной и тензорной форме, позволяет сразу же определить их лоренц-ковариантность, не выполняя преобразование Лоренца.[4]
«Ковариантность» vs «инвариантность»
В последнее время наметилось вытеснение термина лоренц-ковариантность термином лоренц-инвариантность, который всё чаще применяется равно и к законам (уравнениям), и к величинам [источник не указан 5063 дня]. Трудно сказать, является ли это уже нормой языка или всё же, скорее, некоторой вольностью употребления. Однако в более старой литературе[какой?] имелась тенденция строгого разграничения этих терминов: первый (ковариантность) употреблялся по отношению к уравнениям и многокомпонентным величинам (представлениям тензоров, в том числе векторов, и самим тензорам, так как часто не проводилось терминологической грани между тензором и набором его компонент), подразумевая согласованное изменение компонент всех входящих в равенства величин или просто согласованное друг с другом изменение компонент разных тензоров (векторов); второй же (инвариантность) применялся, как более частный, к скалярам (также к скалярным выражениям), подразумевая простую неизменность величины.
Синонимом слов лоренц-инвариантная величина в 4-мерном пространственно-временном формализме является термин скаляр, который для полной конкретизации подразумеваемого контекста иногда называют лоренц-инвариантным скаляром.
(при данном выборе сигнатуры метрики Минковского η приведённый вид оператора совпадает с традиционным определением оператора Д’Аламбера с точностью до знака).