Алгоритм имитации отжигаАлгори́тм имита́ции о́тжига (англ. Simulated annealing) — общий алгоритмический метод решения задачи глобальной оптимизации, особенно дискретной и комбинаторной оптимизации. Один из примеров методов Монте-Карло. Общее описаниеАлгоритм основывается на имитации физического процесса, который происходит при кристаллизации вещества, в том числе при отжиге металлов. Предполагается, что атомы вещества уже почти выстроены в кристаллическую решётку, но ещё допустимы переходы отдельных атомов из одной ячейки в другую. Активность атомов тем больше, чем выше температура, которую постепенно понижают, что приводит к тому, что вероятность переходов в состояния с большей энергией уменьшается. Устойчивая кристаллическая решётка соответствует минимуму энергии атомов, поэтому атом либо переходит в состояние с меньшим уровнем энергии, либо остаётся на месте. (Этот алгоритм также называется алгоритмом Н. Метрополиса, по имени его автора). Моделирование похожего процесса используется для решения задачи глобальной оптимизации, состоящей в нахождении такой точки или множества точек, на которых достигается минимум некоторой целевой функции ("энергия системы"), где ( — "состояние системы", — множество всех состояний). Алгоритм поиска минимума методом имитации отжига предполагает свободное задание:
Алгоритм генерирует процесс случайного блуждания по пространству состояний . Решение ищется последовательным вычислением точек пространства ; каждая точка, начиная с , «претендует» на то, чтобы лучше предыдущих приближать решение. На каждом шаге алгоритм (который описан ниже) вычисляет новую точку и понижает значение величины (изначально положительной), понимаемой как «температура». Последовательность этих точек (состояний) получается следующим образом. К точке применяется оператор , в результате чего получается точка-кандидат , для которой вычисляется соответствующее изменение "энергии" . Если энергия понижается (), осуществляется переход системы в новое состояние: . Если энергия повышается (), переход в новое состояние может осуществиться лишь с некоторой вероятностью, зависящей от величины повышения энергии и текущей температуры, в соответствии с законом распределения Гиббса: Если переход не произошёл, состояние системы остаётся прежним: . Алгоритм останавливается по достижении точки, которая оказывается при температуре ноль. Алгоритм имитации отжига похож на градиентный спуск, но за счёт случайности выбора промежуточной точки и возможности выбираться из локальных минимумов должен реже застревать в локальных, но не глобальных минимумах, чем градиентный спуск. Алгоритм имитации отжига не гарантирует нахождения минимума функции, однако при правильной настройке генерации случайной точки в пространстве , как правило, происходит улучшение начального приближения. Применение
См. такжеПримечания
Литература
Ссылки
|