Em teoria dos números, uma função aditiva é uma função aritmética f(n) de inteiros positivos n de tal modo que sempre que a e b são coprimos, a imagem de seu produto é a soma de suas imagens:[1]
- f(ab) = f(a) + f(b).
Aditividade completa
Uma função aditiva f(n) é dita completamente aditiva se f(ab) = f(a) + f(b) vale para quaisquer inteiros positivos a e b, mesmo quando não são coprimos.[2] Uma função completamente aditiva também é denominada totalmente aditiva, em analogia à funções totalmente multiplicativas. Se f é uma função completamente aditiva, então f(1) = 0.
Toda função completamente aditiva é aditiva, mas não vice-versa.
Exemplos
Exemplo de funções aritméticas completamente aditivas:
- A função logarítmica restrita a .
- A multiplicidade de um fator primo p em n, é o maior expoente m tal que pm divide n.
- a0(n) - a soma dos primos que dividem n contando fatores repetidos, algumas vezes é chamada sopfr(n) (em inglês sum of the prime numbers that divide repeated factors), a potência de n ou o logaritmo inteiro de n (sequência A001414 na OEIS). Por exemplo:
- a0(4) = 2 + 2 = 4
- a0(20) = a0(22 · 5) = 2 + 2+ 5 = 9
- a0(27) = 3 + 3 + 3 = 9
- a0(144) = a0(24 · 32) = a0(24) + a0(32) = 8 + 6 = 14
- a0(2,000) = a0(24 · 53) = a0(24) + a0(53) = 8 + 15 = 23
- a0(2,003) = 2003
- a0(54,032,858,972,279) = 1240658
- a0(54,032,858,972,302) = 1780417
- a0(20,802,650,704,327,415) = 1240681
- A função Ω(n), definida como o número total de todos os fatores primos, mesmo repetidos de n, por vezes chamada de "Função Grande Ômega" (sequência A001222 na OEIS) (não confundir com a Ômega ligada à notação de infinitude Grande-O). Por exemplo:
- Ω(1) = 0, pois 1 não possui fatores primos
- Ω(4) = 2
- Ω(16) = Ω(2·2·2·2) = 4
- Ω(20) = Ω(2·2·5) = 3
- Ω(27) = Ω(3·3·3) = 3
- Ω(144) = Ω(24 · 32) = Ω(24) + Ω(32) = 4 + 2 = 6
- Ω(2,000) = Ω(24 · 53) = Ω(24) + Ω(53) = 4 + 3 = 7
- Ω(2,001) = 3
- Ω(2,002) = 4
- Ω(2,003) = 1
- Ω(54,032,858,972,279) = 3
- Ω(54,032,858,972,302) = 6
- Ω(20,802,650,704,327,415) = 7
Exemplo de funções aritméticas que são aditivas mas que não são completamente aditivas:
- ω(n), definida como o número total de diferentes fatores primos de n (sequência A001221 na OEIS). (não confundir com a Ômega ligada à notação de infinitude Pequeno-O) Por exemplo:
- ω(4) = 1
- ω(16) = ω(24) = 1
- ω(20) = ω(22 · 5) = 2
- ω(27) = ω(33) = 1
- ω(144) = ω(24 · 32) = ω(24) + ω(32) = 1 + 1 = 2
- ω(2,000) = ω(24 · 53) = ω(24) + ω(53) = 1 + 1 = 2
- ω(2,001) = 3
- ω(2,002) = 4
- ω(2,003) = 1
- ω(54,032,858,972,279) = 3
- ω(54,032,858,972,302) = 5
- ω(20,802,650,704,327,415) = 5
- a1(n) - soma de fatores primos distintos que dividem n, por vezes chamada de sopf(n) (sequência A008472 na OEIS) (em inglês sum of the distinct primes). Por exemplo:
- a1(1) = 0
- a1(4) = 2
- a1(20) = 2 + 5 = 7
- a1(27) = 3
- a1(144) = a1(24 · 32) = a1(24) + a1(32) = 2 + 3 = 5
- a1(2,000) = a1(24 · 53) = a1(24) + a1(53) = 2 + 5 = 7
- a1(2,001) = 55
- a1(2,002) = 33
- a1(2,003) = 2003
- a1(54,032,858,972,279) = 1238665
- a1(54,032,858,972,302) = 1780410
- a1(20,802,650,704,327,415) = 1238677
Funções multiplicativas
Ver artigo principal Função multiplicativa.
A partir de qualquer função aditiva f(n) é fácil criar uma função multiplicativa relacionada g(n) i.e. com a propriedade de que sempre que a e b são co-primos tem-se que:
- g(ab) = g(a) × g(b).
Um exemplo é g(n) = 2f(n).
Ver também
Referencias
- ↑ Erdös, P., and M. Kac. On the Gaussian Law of Errors in the Theory of additive functions. Proc Natl Acad Sci USA. 1939 April; 25(4): 206–207. online
- ↑ Janko Bračič, Kolobar aritmetičnih funkcij (Ring of arithmetical functions), (Obzornik mat, fiz. 49 (2002) 4, pp. 97–108) (MSC (2000) 11A25)
|
---|
Princípios gerais | |
---|
Áreas | |
---|
Conceitos-chave | |
---|
Conceitos avançados | |
---|
Principais teóricos | |
---|
|
|