胚発生において、扁平な2層の胚盤から3次元的な体構造への転換は、一部の上皮型細胞の紡錘形で運動性の高い間葉系細胞への転換に依存している。この過程は上皮間葉転換(epithelial to mesenchymal transition, EMT)と呼ばれている[34]。胚発生のより後の過程では、METは特に原腸形成(英語版)、血管新生、筋芽細胞の移動、骨再構築(英語版)、神経の発芽に重要である[35]。METは胚発生に必須であり、MET−/−マウスは胎盤発生の重篤な欠陥のため子宮内で死ぬ[36]。さらに、METは成体での肝臓の再生や創傷治癒などの重要な過程にも必要である[27]。
PTEN(phosphatase and tensin homolog)は、脂質とプロテインホスファターゼに依存した活性と依存しない活性の双方を有するがん抑制因子である[61]。PTENはホスファターゼであり、PI3Kによって生成されたPIP3またはSHCのp52アイソフォームを脱リン酸化することでMETシグナル伝達に干渉する。SHCの脱リン酸化はGRB2アダプタータンパク質の活性化METへのリクルートを阻害する[30]。
^“Identification of the hepatocyte growth factor receptor as the c-met proto-oncogene product”. Science251 (4995): 802–4. (February 1991). doi:10.1126/science.1846706. PMID1846706.
^“Localization of the 5' end of the MCF2 oncogene to human chromosome 15q15----q23”. Cytogenet. Cell Genet.60 (2): 114–6. (1992). doi:10.1159/000133316. PMID1611909.
^“The met oncogene: from detection by transfection to transmembrane receptor for hepatocyte growth factor”. Oncogene7 (1): 3–7. (January 1992). PMID1531516.
^“Phosphorylation of serine 985 negatively regulates the hepatocyte growth factor receptor kinase”. J. Biol. Chem.269 (3): 1815–20. (January 1994). PMID8294430.
^“Mutation of the c-Cbl TKB domain binding site on the Met receptor tyrosine kinase converts it into a transforming protein”. Mol. Cell8 (5): 995–1004. (November 2001). doi:10.1016/S1097-2765(01)00378-1. PMID11741535.
^ ab“A multifunctional docking site mediates signaling and transformation by the hepatocyte growth factor/scatter factor receptor family”. Cell77 (2): 261–71. (April 1994). doi:10.1016/0092-8674(94)90318-2. PMID7513258.
^“Uncoupling of Grb2 from the Met receptor in vivo reveals complex roles in muscle development”. Cell87 (3): 531–42. (November 1996). doi:10.1016/S0092-8674(00)81372-0. PMID8898205.
^“Hepatocyte growth factor-induced signal transduction in two normal mouse epithelial cell lines”. Biochemistry and Molecular Biology International36 (3): 465–74. (Jul 1995). PMID7549943.
^ ab“The motogenic and mitogenic responses to HGF are amplified by the Shc adaptor protein”. Oncogene10 (8): 1631–8. (April 1995). PMID7731718.
^“Interaction between Gab1 and the c-Met receptor tyrosine kinase is responsible for epithelial morphogenesis”. Nature384 (6605): 173–6. (November 1996). doi:10.1038/384173a0. PMID8906793.
^“Gab1 phosphorylation: a novel mechanism for negative regulation of HGF receptor signaling”. Oncogene20 (2): 156–66. (January 2001). doi:10.1038/sj.onc.1204047. PMID11313945.
^“Sustained recruitment of phospholipase C-gamma to Gab1 is required for HGF-induced branching tubulogenesis”. Oncogene19 (12): 1509–18. (March 2000). doi:10.1038/sj.onc.1203514. PMID10734310.
^“Induction of epithelial tubules by growth factor HGF depends on the STAT pathway”. Nature391 (6664): 285–8. (January 1998). doi:10.1038/34657. PMID9440692.
^“Hepatocyte growth factor induces Wnt-independent nuclear translocation of beta-catenin after Met-beta-catenin dissociation in hepatocytes”. Cancer Res.62 (7): 2064–71. (April 2002). PMID11929826.
^ ab“Ets transcription factors cooperate with Sp1 to activate the human tenascin-C promoter”. Oncogene18 (54): 7755–64. (December 1999). doi:10.1038/sj.onc.1203360. PMID10618716.
^“Ets up-regulates MET transcription”. Oncogene13 (9): 1911–7. (November 1996). PMID8934537.
^“Hypoxia promotes invasive growth by transcriptional activation of the met protooncogene”. Cancer Cell3 (4): 347–61. (April 2003). doi:10.1016/S1535-6108(03)00085-0. PMID12726861.
^“MicroRNA miR-199a* regulates the MET proto-oncogene and the downstream extracellular signal-regulated kinase 2 (ERK2)”. J. Biol. Chem.283 (26): 18158–66. (June 2008). doi:10.1074/jbc.M800186200. PMID18456660.
^“Distinct genetic risk based on association of MET in families with co-occurring autism and gastrointestinal conditions”. Pediatrics123 (3): 1018–24. (2009). doi:10.1542/peds.2008-0819. PMID19255034.
^“A familial heterozygous null mutation of MET in autism spectrum disorder”. Autism Res7 (5): 617–22. (2014). doi:10.1002/aur.1396. PMID24909855.
^“Multi-parameter in vitro toxicity testing of crizotinib, sunitinib, erlotinib, and nilotinib in human cardiomyocytes”. Toxicology and Applied Pharmacology272 (1): 245–55. (October 2013). doi:10.1016/j.taap.2013.04.027. PMID23707608.
^“Cardiovascular effects in rats following exposure to a receptor tyrosine kinase inhibitor”. Toxicologic Pathology38 (3): 416–28. (April 2010). doi:10.1177/0192623310364027. PMID20231546.
^“Novel therapy for myocardial infarction: can HGF/Met be beneficial?”. Cellular and Molecular Life Sciences68 (10): 1703–17. (May 2011). doi:10.1007/s00018-011-0633-6. PMID21327916.
^“The tumor suppressor, PTEN/MMAC1, dephosphorylates the lipid second messenger, phosphatidylinositol 3,4,5-trisphosphate”. J. Biol. Chem.273 (22): 13375–8. (May 1998). doi:10.1074/jbc.273.22.13375. PMID9593664.
^“Tumor suppressor activity and epigenetic inactivation of hepatocyte growth factor activator inhibitor type 2/SPINT2 in papillary and clear cell renal cell carcinoma”. Cancer Res.65 (11): 4598–606. (June 2005). doi:10.1158/0008-5472.CAN-04-3371. PMID15930277.
^“The Met kinase inhibitor SU11274 exhibits a selective inhibition pattern toward different receptor mutated variants”. Oncogene23 (31): 5387–93. (July 2004). doi:10.1038/sj.onc.1207691. PMID15064724.
^“Potent and selective inhibitors of the Met [hepatocyte growth factor/scatter factor (HGF/SF) receptor] tyrosine kinase block HGF/SF-induced tumor cell growth and invasion”. Mol. Cancer Ther.2 (11): 1085–92. (November 2003). PMID14617781.
^“A selective small molecule inhibitor of c-Met kinase inhibits c-Met-dependent phenotypes in vitro and exhibits cytoreductive antitumor activity in vivo”. Cancer Res.63 (21): 7345–55. (November 2003). PMID14612533.
^“Fully human monoclonal antibodies to hepatocyte growth factor with therapeutic potential against hepatocyte growth factor/c-Met-dependent human tumors”. Cancer Res.66 (3): 1721–9. (February 2006). doi:10.1158/0008-5472.CAN-05-3329. PMID16452232.
^“Targeting the tumor and its microenvironment by a dual-function decoy Met receptor”. Cancer Cell6 (1): 61–73. (July 2004). doi:10.1016/j.ccr.2004.05.032. PMID15261142.
^“HGF/SF modifies the interaction between its receptor c-Met, and the E-cadherin/catenin complex in prostate cancer cells”. Int. J. Mol. Med.7 (4): 385–8. (2001). doi:10.3892/ijmm.7.4.385. PMID11254878.
^“Ligand-regulated binding of FAP68 to the hepatocyte growth factor receptor”. J. Biol. Chem.276 (49): 46632–8. (2001). doi:10.1074/jbc.M104323200. PMID11571281.
^“Specific uncoupling of GRB2 from the Met receptor. Differential effects on transformation and motility”. J. Biol. Chem.271 (24): 14119–23. (1996). doi:10.1074/jbc.271.24.14119. PMID8662889.
^“Signaling by HGF and KGF in corneal epithelial cells: Ras/MAP kinase and Jak-STAT pathways”. Invest. Ophthalmol. Vis. Sci.39 (8): 1329–38. (1998). PMID9660480.
^“Structure, biosynthesis and biochemical properties of the HGF receptor in normal and malignant cells”. EXS65: 131–65. (1993). PMID8380735.
^“Association of the HGF/SF receptor, c-met, with the cell-surface adhesion molecule, E-cadherin, and catenins in human tumor cells”. Biochem. Biophys. Res. Commun.261 (2): 406–11. (1999). doi:10.1006/bbrc.1999.1002. PMID10425198.
^“Activation of Ras/Erk pathway by a novel MET-interacting protein RanBPM”. J. Biol. Chem.277 (39): 36216–22. (2002). doi:10.1074/jbc.M205111200. PMID12147692.
“HGF/SF-met signaling in the control of branching morphogenesis and invasion”. J. Cell. Biochem.88 (2): 408–17. (February 2003). doi:10.1002/jcb.10358. PMID12520544.
“Hepatocyte growth factor/scatter factor activates the ETS1 transcription factor by a RAS-RAF-MEK-ERK signaling pathway”. Oncogene21 (15): 2309–19. (April 2002). doi:10.1038/sj.onc.1205297. PMID11948414.
“Structure, biosynthesis and biochemical properties of the HGF receptor in normal and malignant cells”. EXS65: 131–65. (1993). PMID8380735.
“Role of the hepatocyte growth factor receptor, c-Met, in oncogenesis and potential for therapeutic inhibition”. Cytokine Growth Factor Rev.13 (1): 41–59. (2002). doi:10.1016/S1359-6101(01)00029-6. PMID11750879.
“c-Met: structure, functions and potential for therapeutic inhibition”. Cancer Metastasis Rev.22 (4): 309–25. (2003). doi:10.1023/A:1023768811842. PMID12884908.
“Signalling by HGF/SF and Met: the role of heparan sulphate co-receptors”. Biochem. Soc. Trans.34 (Pt 3): 414–7. (2006). doi:10.1042/BST0340414. PMID16709175.