中心つき四面体数中心つき四面体数(ちゅうしんつきしめんたいすう、英: centered tetrahedral number)は、四面体についての中心つき図形数。非負整数 n に対して、n 番目の中心つき四面体数は で与えられる[1]。最初のいくつかの中心つき四面体数は
である。 定義と公式まず、0番目は1点のみと見なす。すなわち C0 = 1 である。以下帰納的に、n 番目の点の並びは n - 1 番目の点の周りに、四面体の面状に点を付け加えたものと見なす。付け加える点は、通常の四面体数 の点の並びのうち、表面のみの部分である。n = 1, 2, 3 に対しては全ての点が表面にあるが、n ≥ 4 に対しては表面のみの点の個数は(内部の点を抜いて) となる。形式上、n = 1, 2, 3 に対しても Tn - 3 = 0 となるので、全ての n ≥ 1 に対して が成り立つ。よって、 である。 性質
ただし、n = -2, -1, 0 に対しては Tn = 0 と見なす。このことは、上記の定義から直ちに従う。四面体数は二項係数で表されるので、二項係数の性質を用いるなどして、様々な公式が得られる。例えば が成り立つ。このことから、次のような意味付けができる。集合 X = {1, 2, 3, ..., n + 4} とその特定の部分集合 Y = {1, 2, 3, 4} を考えよう。4個の元からなる X の部分集合のうち、Y と共通部分を持つものの個数が、Cn に等しい[2]。 脚注
|
Index:
pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve
Portal di Ensiklopedia Dunia