リッジ回帰
リッジ回帰(リッジかいき、Ridge regression)は、独立変数が強く相関している場合に、重回帰モデルの係数を推定する方法[1]。計量経済学、化学、工学などの分野で使用されている[2]。 この理論は、1970年に Hoerl と ケナード が Technometrics の論文「RIDGE regressions: biased estimation of nonorthogonal problems」と「RIDGE regressions: applications in nonorthogonal problems」で初めて紹介した[3][4][1]。これは、リッジ分析の分野における 10 年間の研究の結果だった[5]。 リッジ回帰は、線形回帰モデルに多重共線性がある(強く相関する独立変数がある)場合に最小二乗推定量が不正確になることを解決するために開発された。リッジ回帰推定量は、最小二乗推定量よりも精度が高い[6][2]。 数学的詳細の列ベクトル は の計画行列 (通常は)の列空間に射影され、その列は高度に相関しているものとする。正射影 を得るための係数 の最小二乗推定量 は それに対して、リッジ回帰推定量 は ここで、 は の単位行列であり、 は小さい値である。 脚注
|
Index:
pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve
Portal di Ensiklopedia Dunia