-Series: Their Development and Application in Analysis, Number Theory, Combinatorics, Physics and Computer Algebra: Their Development and Application in Analysis, Number Theory, Combinatorics, Physics, and Computer Algebra, GE Andrews - 1986.
Ramanujan's Lost Notebook: Part I (with Bruce C. Berndt) (Springer, 2005, ISBN 0-387-25529-X)
Ramanujan's Lost Notebook: Part II, (with Bruce C. Berndt) (Springer, 2008, ISBN 978-0-387-77765-8)
Ramanujan's Lost Notebook: Part III, (with Bruce C. Berndt) (Springer, 2012, ISBN 978-1-4614-3809-0)
Ramanujan's Lost Notebook: Part IV, (with Bruce C. Berndt) (Springer, 2013, ISBN 978-1-4614-4080-2)
"Special functions" by George Andrews, Richard Askey, and Ranjan Roy, Encyclopedia of Mathematics and Its Applications, en:Cambridge University Press, 1999.
関連文献
Selected Works of George E Andrews (World Scientific Publishing, 2012, ISBN 978-1-84816-666-0)
Askey, R. (2001). The work of George Andrews: a Madison perspective. In The Andrews Festschrift (pp. 17-38). Springer, Berlin, Heidelberg.
A simple proof of Ramanujan’s summation of the , GE Andrews, R Askey - Aequationes Mathematicae, 1978.
1980年代
Another -extension of the beta function, GE Andrews, R Askey - Proceedings of the American Mathematical Society, 1981.
Eight-vertex SOS model and generalized Rogers-Ramanujan-type identities, GE Andrews, RJ Baxter, PJ Forrester - Journal of Statistical Physics, 1984.
The Bailey lattice, AK Agarwal, GE Andrews, DM Bressoud - The Journal of the Indian Mathematical Society, 1987.
Rogers-Ramanujan identities for partitions with “N copies of N”, AK Agarwal, GE Andrews - Journal of Combinatorial Theory, Series A, 1987.
Partitions and indefinite quadratic forms, GE Andrews, FJ Dyson, D Hickerson - Inventiones Mathematicae, 1988.
1990年代
The continued fractions found in the unorganized portions of Ramanujan's notebooks, GE Andrews, BC Berndt, L Jacobsen, RL Lamphere - 1992.
Generalizations and refinements of a partition theorem of Gollnitz, K Alladi, GE Andrews, B Gordon - Journal fur die Reine und Angewandte Mathematik, 1995.
An Bailey lemma and Rogers-Ramanujan-type identities, G Andrews, A Schilling, S Warnaar - Journal of the American Mathematical Society, 1999.
2000年代以降
An infinite family of Engel expansions of Rogers–Ramanujan type, GE Andrews, A Knopfmacher, P Paule - Advances in Applied Mathematics, 2000.
MacMahon's partition analysis: the Omega package, GE Andrews, P Paule, A Riese - European Journal of Combinatorics, 2001.
-series identities and values of certain L-functions, GE Andrews, J Jiménez-Urroz, K Ono - Duke Mathematical Journal, 2001.
The WP-Bailey tree and its implications, G Andrews, A Berkovich - Journal of the London Mathematical Society, 2002.
Baxter algebras and Hopf algebras, G Andrews, L Guo, W Keigher, K Ono - Transactions of the American Mathematical Society, 2003.
A combinatorial interpretation of the Legendre-Stirling numbers, G Andrews, L Littlejohn - Proceedings of the American Mathematical Society, 2009
Arithmetic properties of partitions with even parts distinct, GE Andrews, MD Hirschhorn, JA Sellers - The Ramanujan Journal, 2010.
^Andrews, G. E. (2004). On a partition function of Richard Stanley. The electronic journal of combinatorics, 11(2).
^Ishikawa, M., & Zeng, J. (2009). The Andrews–Stanley partition function and Al-Salam–Chihara polynomials. Discrete Mathematics, 309(1), 151-175.
^Yee, A. J. (2004). On partition functions of Andrews and Stanley. Journal of Combinatorial Theory, Series A, 107(2), 313-321.
^Sills, A. V. (2004). A combinatorial proof of a partition identity of Andrews and Stanley. International Journal of Mathematics and Mathematical Sciences, 2004(47), 2495-2501.
^Berkovich, A., & Garvan, F. (2006). On the Andrews-Stanley refinement of Ramanujan’s partition congruence modulo 5 and generalizations. Transactions of the American Mathematical Society, 358(2), 703-726.
^Swisher, H. (2011). The Andrews-Stanley partition function and : congruences. Proceedings of the American Mathematical Society, 139(4), 1175-1185.
^Wang, M. (2008). A remark on Andrews–Askey integral. Journal of Mathematical Analysis and Applications, 341(2), 1487-1494.
^Cao, J. (2014). A note on generalized -difference equations for -beta and Andrews–Askey integral. Journal of Mathematical Analysis and Applications, 412(2), 841-851.
^Liu, Z. G. (2016). Extensions of Ramanujan's reciprocity theorem and the Andrews–Askey integral. Journal of Mathematical Analysis and Applications, 443(2), 1110-1129.
^Bressoud, D., & Zeilberger, D. (1985). A proof of Andrews' -Dyson conjecture. NUMBER THEORY AND RELATED TOPICS, 35.
^Kadell, K. W. (1985). A proof of Andrews’ -Dyson conjecture for 𝑛= 4. Transactions of the American Mathematical Society, 290(1), 127-144.
^Capparelli, S., Lepowsky, J., & Milas, A. (2006). The Rogers–Selberg recursions, the Gordon–Andrews identities and intertwining operators. The Ramanujan Journal, 12(3), 379-397.
^Melzer, E. (1994). Supersymmetric analogs of the Gordon-Andrews identities, and related TBA systems. arXiv preprint hep-th/9412154.
^Warnaar, S. O. (1997). The Andrews–Gordon identities and -multinomial coefficients. Communications in mathematical physics, 184(1), 203-232.
^Richmond, B., & Szekeres, G. (1981). Some formulas related to dilogarithms, the zeta function and the Andrews-Gordon identities. Journal of the Australian Mathematical Society, 31(3), 362-373.
^Berkovich, A., & Paule, P. (2001). Variants of the Andrews-Gordon identities. The Ramanujan Journal, 5(4), 391-404.
^Hikami, K. (2006). -series and -functions related to half-derivatives of the Andrews-Gordon identity. The Ramanujan Journal, 11(2), 175-197.
^Berkovich, A., & Paule, P. (2001). Lattice paths, -multinomials and two variants of the Andrews-Gordon identities. The Ramanujan Journal, 5(4), 409-425.