Numero ennagonale centratoIn teoria dei numeri, un numero ennagonale centrato è un numero poligonale centrato che rappresenta un ennagono con un punto al centro e gli altri punti che lo circondano. La formula per l'n-esimo numero ennagonale centrato è:
I primi numeri ennagonali centrati sono: 1, 10, 28, 55, 91, 136, 190, 253, 325, 406, 496, 595, 703, 820, 946, 1081, 1225, 1378, 1540, 1711, 1891, 2080, 2278[1]. Proprietà matematicheL'n-esimo numero ennagonale centrato può essere visto come la somma di nove volte l'(n-1)-esimo numero triangolare e di un punto centrale. Un numero triangolare su tre è anche ennagonale centrato: lo sono tutti gli (3n+1)-esimi numeri triangolari. Conoscendo l'n-esimo numero ettagonale centrato, si può ricavare il successivo aggiungendo 9n. I numeri ennagonali centrati ad essere anche perfetti sono il 3°, 11°, 43°, 2731°, 43691°, 174763°...[3]
La sequenza dei numeri ennagonali centrati, espressa modulo 2, è pari a 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1... Ciò significa che, dopo l'1 iniziale dispari, si susseguono alternativamente coppie di numeri ennagonali centrati pari e dispari. Note
|
Portal di Ensiklopedia Dunia