Radioprotection![]() ![]() La radioprotection est, en mécanique quantique ou physique atomique et nucléaire, l'ensemble des mesures prises pour assurer la protection de l'homme et de son environnement contre les effets néfastes des rayonnements ionisants. PrincipesLe principe général de précaution "ALARA", As Low As Reasonably Achievable, signifiant en français « aussi bas que raisonnablement possible », est applicable au risque d'exposition aux rayonnements ionisants[1]. De ce principe en découle trois autres grands principes qui sont[2] :
Effets biologiques , l'environnement , radioprotectionCompte tenu de leur énergie, les rayonnements ionisants ont un effet néfaste sur les cellules vivantes et particulièrement sur l'ADN. Les rayonnements peuvent ainsi induire des modifications ou ruptures de la chaîne d'ADN, réparables ou non. Les effets ainsi produits peuvent être :
Dose et expositionsLes sources d'expositions aux rayonnements ionisants peuvent être de deux natures :
Il y a des différences majeures entre ces deux types d'exposition :
![]() La dose efficace est calculée en prenant en compte ces deux composantes de l'exposition.
Les doses mentionnées dans le tableau pour l'exposition des populations françaises sont moyennes. Concernant l'exposition d'origine naturelle, les variations selon les régions de France et selon les modes de vie sont importantes. De même, le nombre d'actes médicaux « dosant » effectués dans l'année peut très largement varier d'un individu à un autre (de nombreuses personnes n'ont pas eu d'exposition médicale en 2002). Dose externeLa dose externe est engendrée par différents types d’exposition :
La dose d'irradiation a essentiellement une décroissance exponentielle dans l'organisme en fonction de la profondeur après un passage par un maximum appelé Crête de Tavernier du nom du physicien belge Guy Tavernier qui découvrit le phénomène en 1948. Cette allure de courbe est semblable pour les faisceaux de photons et de neutrons et les rayons X et Gamma. Dans le cas d’un accident, la dose peut être évaluée avec des codes de calcul qui prennent en compte l'activité de la source, la distance, les écrans et les réflecteurs. L’utilisation de la dosimétrie biologique est également efficace pour reconstituer la dose dans ce cas. Elle est effectuée par un prélèvement sanguin (lymphocyte) et le recensement d’anomalies chromosomiques. Les travailleurs pouvant être soumis à des rayonnements ionisants lors de leur activité (industries nucléaires, médecins, radiologues…) portent un dosimètre (dosimètre électronique et/ou dosimètre à lecture différée) qui mesure la quantité de rayonnements auxquels ils ont été soumis. Ces dispositifs permettent de s’assurer que la personne n’a pas reçu une dose supérieure à la norme tolérée ou d’en mesurer l’importance. En 2002, ce suivi dosimétrique réglementaire concernait 253 000 travailleurs exposés aux rayonnements ionisants, dont 111 000 personnes dans le secteur médical (le premier concerné, devant le secteur nucléaire)[5]. Dose interneLa dose interne est engendrée par l'incorporation de radionucléides dans l'organisme. Comme la dose externe elle peut être la conséquence de différentes expositions :
Si l'exposition n'est pas chronique, la concentration en radionucléides présents dans l'organisme va diminuer avec le temps. La dose n'est donc pas immédiate mais répartie sur plusieurs mois ou années. On parle alors de « dose engagée » : la dose intégrée sur la vie de l'individu (soit sur 50 ans pour un adulte et sur 70 ans pour un enfant). Les radionucléides vont décroître selon deux phénomènes :
Pour prendre en compte la décroissance globale des radionucléides dans l'organisme, on utilise la notion de période effective : L'élimination des radionucléides de l'organisme ne s'effectue pas de façon linéaire. Elle suit une fonction d'excrétion (ou de rétention si on considère l'évolution de l'activité encore présente dans l'organisme). Ces fonctions mathématiques dépendent principalement des radionucléides (pour la décroissance radioactive) et de leur forme physico-chimique (pour la décroissance biologique). Le mode d'exposition (chronique ou aiguë) et la voie d'entrée (inhalation ou ingestion) peuvent venir également perturber cette élimination. Règles de protection opérationnellePour l'utilisateur, il existe quatre règles fondamentales de protection contre les sources de rayonnements externes : la Distance, l'Activité, le Temps et les Écrans (moyen mnémotechnique : « D.A.T.E. »). DistanceS’éloigner de la source de rayonnements. En effet, dans le cas de rayonnement qui s'atténuent peu dans l'air, la dose reçue par une source ponctuelle diminue selon l'inverse du carré de la distance (cette relation est valable dans tous les milieux isotropes ainsi que dans le vide) : ActivitéRéduire l'activité de la source, par exemple :
TempsMinimiser la durée de l’exposition aux rayonnements. ÉcranDans le cas d'une exposition externe, il est possible d'utiliser des écrans de protection entre la source et les personnes. Ces écrans sont choisis en fonction des caractéristiques des rayonnements ionisants émis (par exemple : des murs de béton, des parois en plomb et des verres spéciaux chargés en plomb pour les rayonnements électromagnétiques : gamma et X)[6]. Le rayonnement alpha peut être arrêté par une simple feuille de papier. Le rayonnement bêta doit être arrêté par des écrans dont les atomes qui le constituent ont un faible numéro atomique afin de ne pas favoriser l'émission de rayonnement de freinage. Quelques millimètres d'aluminium permettent d'arrêter ce rayonnement, le laiton et le plexiglas permettent également d'arrêter ce rayonnement, quelques mètres d'air permettent également de l'arrêter. Pour le rayonnement électromagnétique, il est atténué et non arrêté par les écrans. On utilise les notions d'« épaisseur demi » (ou couche de demi atténuation : CDA) et d'« épaisseur dixième ». Elles correspondent aux épaisseurs permettant de réduire la dose efficace, respectivement d'un facteur deux et d'un facteur dix. Ces valeurs sont étroitement liées au coefficient d'atténuation linéique (ou coefficient massique d'atténuation), µ (en cm-1), lui-même dépendant du numéro atomique de l'élément utilisé comme écran. On estime qu'à partir de 10 CDA (qui laissera donc passer un photon sur 1024), si la source n'est pas trop forte, le nombre de rayonnement restant est négligeable. Il faut donc plusieurs CDA afin d'arrêter un maximum de rayons incidents. ![]() Le tablier de plomb existe selon plusieurs épaisseurs de plomb. En toute logique, un tablier de 0,5 mm de plomb arrêtera plus de rayons incidents qu'un tablier de 0,25 mm de plomb. Mais cela dépend évidemment de l'énergie des rayons incidents car un tablier de 0,25 mm de plomb suffira amplement à arrêter des rayons de basse énergie (tel que 40 keV) et cela est moins lourd sur les épaules. Toutefois, le tablier devient inefficace aux hautes énergies (> 100 keV) car il ne permet plus d'arrêter les rayonnements de manière significative. Il ne convient pas non plus pour le rayonnement de particules chargées (béta …) à cause du rayonnement de freinage qui peut être induit. Il existe aussi des gants de protection aux radiations, dont l'efficacité varie avec le type de source manipulée[7]. Pour la contamination interne, il n'y a pas d'écran à proprement parler mais des barrières permettant de l'éviter : masque filtrant, boite à gant ventilée, etc. Aspects réglementairesLa prise de conscience du danger d’une exposition excessive aux rayonnements ionisants a amené les autorités à fixer des normes réglementaires pour les limites de dose radiative. Ces limites correspondent à un risque supplémentaire minime par rapport au risque naturel, ce qui le rend donc acceptable, les valeurs de ces limites réglementaires par conséquent ne prennent pas en compte l'exposition naturelle. Organismes internationaux
Au niveau européenL’Union européenne, au travers d'Euratom, reprend les avis de l'UNSCEAR et les recommandations de la CIPR dans ses propres normes ou directives. Les limites légales de radioprotection donnent[8] :
Le législateur divise par 10 ou 20 les doses admissibles des travailleurs pour la population car il considère que celle-ci comporte des sujets de tous âges, de tous états de santé et qui ne sont pas si bien suivis médicalement… Ces directives doivent être transcrites dans les législations de chacun des pays membres qui peuvent également fixer une limite annuelle pour les travailleurs. La limite de 1 mSv/an pour le public ne concerne pas l'irradiation naturelle ni l'irradiation à des fins médicales. Cette limite porte donc spécifiquement sur l'irradiation (non-médicale) d'origine artificielle, d'où l'on peut déduire d'autres règles de protection : épaisseurs des écrans à placer autour d'installations émettant des rayonnements ionisants, règles de zonage des installations nucléaires, etc. En FranceEn France, la radioprotection est définie par la loi comme « la protection contre les rayonnements ionisants, c'est-à-dire l'ensemble des règles, des procédures et des moyens de prévention et de surveillance visant à empêcher ou à réduire les effets nocifs des rayonnements ionisants produits sur les personnes, directement ou indirectement, y compris par les atteintes portées à l'environnement »[9]. Pour le Code de la santé publique, c'est l'« ensemble de mesures destinées à assurer la protection sanitaire de la population et des travailleurs au regard de l’exposition aux rayonnements ionisants. Elle satisfait les trois principes fondamentaux que sont la justification, la limitation et l'optimisation »[10]. Les établissements détenant une source de rayonnements ionisants sont astreints à l'application du code de la santé publique et du code du travail. Les limites annuelles de dose efficace en vigueur, fixées par le décret du , transposent en droit français la directive Euratom 96/29, soit :
Par ailleurs, les femmes enceintes ne doivent pas dépasser 1 mSv au niveau de l'abdomen, le fœtus étant considéré comme protégé par les mêmes limites que le public. Ainsi, dès qu'une travailleuse a déclaré sa grossesse, elle est exclue des travaux nécessitant une catégorisation A. De même, la femme allaitante doit être exclue de tous les travaux à risque de contamination. Enfin les travailleurs mineurs ne doivent également pas dépasser 3/10 des limites et les personnes en contrat à durée déterminée ou en contrat intérimaire ne peuvent pas être soumis à un débit de dose supérieur à 2 mSv/h. « SISERI » (Système d'information de la surveillance de l'exposition aux rayonnements ionisants) est l'outil national de gestion des données dosimétriques d'exposition des travailleurs à la radioactivité. Géré par l'IRSN il doit garantir une traçabilité et mémorisation des doses reçues par chaque travailleur durant sa vie professionnelle, et comprend une "carte de suivi médical" accessible au médecin du travail. Code de la santé publiqueLe code de la santé publique fixe entre autres les limites de doses admissibles pour le public. Il oblige notamment à demander une autorisation, un enregistrement ou à déposer une déclaration pour toute activité pouvant exposer des personnes aux rayonnements ionisants, sauf s'ils émanent d'une source entrant dans un des cas d'exemption. Ces cas concernent par exemple les sources radioactives d'activité inférieure aux seuils d'exemption internationaux, les générateurs de rayons X de faible tension, sources naturelles non utilisées en raison de leur radioactivité. L'autorisation existe depuis 1952 pour les sources composées de radionucléides artificiels, c'est-à-dire les sources radioactives dont le contenu n'est pas un produit présent dans les minerais de thorium ou d'uranium. Ces radionucléides dits naturels avaient probablement été exclus car leur représentant principal (le radium) était utilisé depuis plus de trente ans librement et son emploi était déjà sur le déclin : l'époque n'était pas encore axée sur les problèmes de déchets ou la remise en état des sites, la cessation d'utilisation semblant un peu assimilée à la cessation de l'exposition. Les générateurs électriques, notamment industriels, ont eu pendant longtemps un régime uniquement déclaratif. Code du travailLe code du travail organise la radioprotection dans l'entreprise, par exemple, les limites de dose, le suivi dosimétrique des travailleurs exposés ou le balisage des zones d'expositions (notions de zones contrôlées, zones surveillées…). Les premiers textes applicables remontent à 1934, à la suite des problèmes de santé qui se sont révélés dans les années 1920 pour les médecins radiologues ou les ouvriers de certains secteurs comme l'horlogerie. Des révisions majeures ont été faites en 1967 et 1986 (création de la personne compétente en radioprotection avec formation « diplômante »). La refonte du [11] concerne :
Des modifications importantes sont apportés au code du travail en 2018, créant notamment la notion de conseiller en radioprotection, qui reprend et élargit les anciennes missions de la personne compétente en radioprotection. Plan de surveillance de l'alimentationCe plan (imposé par l’Europe pour quelques contaminants dont plomb, mercure, cadmium) est reconduit chaque année (mis en œuvre avec l'IRSN pour la partie concernant la recherche et le dosage de radionucléides). Le ministère de l’agriculture rappelle que « les résultats obtenus sont autant de données indispensables à l'évaluation de l'exposition du consommateur, qui doit se faire dans le cadre de l'analyse de risque menée dans une optique de révision des teneurs retenues dans le règlement européen post-accidentel (règlement (Euratom) n°3954/87) »[15]. À titre d'exemple, en 2010, le plan de surveillance annuel n'a pas inclus d'analyses à grande échelle ni d’analyses d’échantillons en nombre statistiquement significatif[15]. Seuls 683 échantillons ont été étudiés pour toute la France, dont une grande partie par des moyens dont les limites de quantification n’ont pas permis de mesure[15]. Ces mesures ont toutefois confirmé que pour les échantillons alimentaires dont la radioactivité dépassait la limite de quantification, la bioaccumulation et teneur en radionucléides semble être la plus élevée dans le gibier (forestier probablement)[15]. La radioactivité a en 2010 été mesurée dans quelques échantillons de viande d'animaux chassés (le ministère de l'Agriculture ne précise pas chez quelles espèces ni dans quels organes) ; Elle était en 2010 en moyenne de 12,43 Bq/kg pour le gibier, soit 113 fois plus que la moyenne pour la viande bovine cette même année (établie à 0,114 Bq/kg, radioactivité équivalente à celle trouvés dans le groupe crustacés/mollusques qui était de 0,133 Bq/kg). Améliorer la qualité du travail analytique passe à la fois par l'amélioration du seuil de quantification et par celle du seuil de détection (d'autres critères sont la spécificité, la fidélité, l'exactitude, la linéarité et la stabilité du processus analytique). MédicamentsNotes et références
Voir aussiBibliographie
Articles connexes
PhysiqueEffets biologiques |
Portal di Ensiklopedia Dunia