Eau liquide dans l'Univers

L'eau liquide est probablement abondante dans l'Univers, même si sa présence stable n'est attestée, en 2024, que sur un seul corps, la Terre.

L'existence d'eau liquide sur d'autres corps est un sujet particulièrement étudié car, entre autres, elle est généralement considérée comme l'un des préalables essentiels à la vie[1]. La recherche d'eau liquide ailleurs que sur Terre est donc une partie importante du travail effectué dans le cadre de la recherche de vie extraterrestre.

Par sa surface recouverte à environ 71 % par des océans, la Terre est le seul astre connu pour abriter des zones stables d'eau liquide. Par ailleurs, l'eau liquide est essentielle à tous les organismes vivants connus qui y vivent. La présence d'eau liquide sur Terre est le résultat d'une pression atmosphérique suffisante à sa surface et du fait que l'orbite terrestre est située dans la zone d'habitabilité du Soleil, celle-ci étant quasi circulaire et stable. Cependant, son origine demeure incertaine.

Différentes méthodes sont utilisées pour détecter de l'eau liquide ailleurs que sur Terre. Les principales sont la spectroscopie d'absorption et la géochimie. Ces techniques se sont avérées efficaces pour détecter de la vapeur d'eau et de la glace d'eau, mais l'eau liquide s'avère plus difficilement détectable par spectroscopie astronomique, notamment lorsque l'eau est souterraine. Pour cette raison, les astronomes, les planétologues et les exobiologistes étudient et utilisent les effets de marée, des modèles de différenciation planétaire et des techniques de radiométrie pour évaluer le potentiel d'un objet à abriter de l'eau liquide. L'eau émise lors de phénomènes volcaniques peut fournir des indices, tout comme des caractéristiques fluviales et la présence d'antigels (sels ou ammoniac).

En utilisant ces méthodes, l'eau liquide semble avoir couvert une grande partie de la surface de Mars dans le passé. Ce semble être également le cas sur Vénus. Cependant, l'eau liquide peut également exister en profondeur dans les corps planétaires, à la manière des eaux souterraines terrestres. La vapeur d'eau est parfois considérée comme une preuve de la présence d'eau liquide, bien qu'elle puisse être décelée là où il n'y a pas de traces d'eau liquide. Des preuves similaires soutiennent la présence d'eau liquide sous la surface de nombreuses lunes et planètes naines, parfois sous forme de grands océans subglaciaires. L'eau liquide est envisagée comme commune dans d'autres systèmes planétaires malgré l'absence de preuves concluantes à l'heure actuelle (2015).

Prédiction et détection

Conditions générales d'existence

Diagramme de phase de l'eau.

L'eau pure n'existe sous forme liquide que dans un domaine restreint de couples pression-température, correspondant à la zone colorée en vert sur le diagramme de phase ci-contre.

En deçà de 251,165 kelvins (−22,015 °C), température du point triple entre l'état liquide, l'état glace Ih (la glace que l'on connaît habituellement) et l'état glace III, l'eau existe uniquement sous forme de glace (de différentes phases mais toutes solides) ou de vapeur. La température maximale est quant à elle celle du point critique de l'eau, 674 kelvins (301 °C). En effet, aux pressions où l'eau est liquide à cette température, l'eau devient un fluide supercritique aux températures plus élevées, on ne peut donc plus parler stricto sensu d'état liquide.

Au niveau de la pression, le minimum nécessaire est la pression du point triple liquide/solide (Ih)/vapeur de l'eau : 611,73 pascals, soit environ 0,6 % de la pression atmosphérique normale. La pression maximale est quant à elle celle de la transition entre état liquide et état glace VII à la température du point critique, soit environ 13 gigapascals, soit encore de l'ordre de 130 000 fois la pression atmosphérique normale.

Cependant, la présence d'éléments dissous jouant par exemple le rôle d'antigel peuvent abaisser significativement le point de congélation de l'eau et, par suite, autoriser la présence d'eau liquide à des températures bien plus basses que celle où ce serait possible pour de l'eau pure. C'est ainsi que semble exister, au moins de façon transitoire, de l'eau liquide (ou des sortes de saumures liquides) là où elle n'existerait si l'eau était pure.

Spectroscopie

Spectre d'absorption de l'eau liquide dans les domaines ultraviolet, visible, infrarouge et radio.

La méthode la plus concluante de détection et de confirmation de la présence d'eau liquide est la spectrométrie d'absorption. L'eau liquide a une signature spectrale différente des autres états, due à l'état de sa liaison hydrogène[2]. Cependant, les eaux de surface sur des planètes telluriques peuvent être rendues indétectables par cette méthode à cause de la présence d'une atmosphère.

La présence de vapeur d'eau a été confirmée sur de nombreux objets par spectroscopie, mais elle ne suffit pas à prouver l'existence d'eau liquide. Toutefois, lorsqu'elle est combinée à d'autres observations, la présence d'eau liquide peut en être déduite. Ainsi, la densité de Gliese 1214 b suggère qu'une partie importante de sa masse est de l'eau et la détection par le télescope spatial Hubble de vapeur d'eau suggère fortement la présence de glace chaude ou d'eau supercritique[3],[4].

Indicateurs géologiques

Thomas Gold a postulé que de nombreux corps du Système solaire pourraient abriter de l'eau liquide sous leur surface[5]. La présence de cette eau pourrait être détectée par certaines caractéristiques géologiques.

Sphérule d'hématite de 1,3 cm, vraisemblablement formée en milieux aqueux et photographiée par Opportunity sur Mars.

Ainsi il est possible que Mars possède de l'eau liquide souterraine. La recherche suggère également que dans son passé s'écoulait de l'eau à sa surface, laissant de larges zones semblables aux océans terrestres[6]. Certains indices directs et indirects suggèrent la présence d'eau liquide sur ou sous sa surface[7] : des lits de cours d'eau, calottes polaires, mesures de spectrométrie, cratères érodés ou la présence de minéraux dont l'existence est liée directement à la présence d'eau (tels que l'opale ou la goethite).

Chaos sur Europe.

Les terrains chaotiques pourraient aussi être liés à la présence d'eau liquide souterraine. Ainsi, en , une équipe de chercheurs publie un article dans Nature qui suggère que plusieurs chaos présents sur Europe sont situés sur de grands lacs d'eau liquide. Ces lacs seraient entièrement enfermés dans l'enveloppe externe et glaciale du satellite et, plus bas dans la couche de glace, se trouverait un océan liquide[8]. Sur Encelade, de tels chaos sont observés (voir Rayures de tigre) et les cristaux de glace dont ils sont constitués montrent qu'ils sont récents[9].

Cryovolcanisme

Des geysers éjectant de la vapeur d'eau ont été trouvés sur Europe et Encelade[10],[11]. La présence de sel dans ceux d'Encelade permet d'en déduire que l'eau a une origine profonde[12]. Le cryovolcanisme peut constituer un indice de la présence d'eau liquide souterraine si les geysers éjectent de l'eau, et un indice encore plus important si, en plus de l'eau, ils éjectent des sels.

Forces de marées

Le consensus scientifique est en faveur de la présence d'eau liquide sous la surface d'Europe et d'une l'énergie permettant de la maintenir, issue de la chaleur engendrée par des forces de marées[13],[14],[15]. Les premiers indices de la présence de ces forces de marées provenaient de considérations théoriques sur le chauffage par les forces de marée (une conséquence de l'orbite légèrement excentrique de la lune et d'une résonance orbitale avec les autres satellites galiléens).

Les scientifiques utilisent des mesures effectuées par Cassini pour confirmer la présence d'un océan d'eau liquide sous la surface d'Encelade. Les modèles en découlant des forces de marées ont été utilisés pour théoriser la présence de couches d'eau liquide sur d'autres lunes du Système solaire.

Calculs de densité

Les planétologues peuvent utiliser[Comment ?] des calculs de densité pour déterminer la composition d'une planète (ou un astre en général) et ainsi évaluer son potentiel à posséder de l'eau liquide. La méthode manque toutefois de précisions car les combinaisons de nombreux composés et d'états peuvent produire des résultats similaires.

Les scientifiques ont également utilisé des signaux radios et le radar de Cassini pour détecter la présence d'une couche d'eau liquide et de l'ammoniac sur Titan[16],[17]. Les résultats obtenus sont cohérents avec ceux obtenus en réalisant des calculs de densité.

Modèles de décroissance radioactive

Les modèles de décroissance radioactive sur de petits corps glacés du Système solaire suggère que Rhea, Titania, Oberon, Triton, Pluton, Éris, Sedna et Orcus pourraient posséder des océans souterrains[18]. Ces modèles indiquent que ces couches d'eau liquide sont en contact direct avec le noyau rocheux, permettant une dissolution efficace des sels minéraux dans l'eau à l'inverse de satellites plus grands comme Ganymède, Callisto ou Titan dont les couches d'eau liquide reposeraient sur de la glace sous haute pression[18].

Modèles de différenciation interne

Deux modèles de différenciation interne pour Europe (en anglais) : l'un suppose l'existence d'une couche de glace chaude en profondeur, l'autre la présence d'un océan d'eau liquide.

Les modèles de certains objets du Système solaire révèlent la présence d'eau liquide dans leur composition interne.

Ainsi, des modèles de la planète naine Cérès montrent qu'une couche d'eau liquide peut exister sous sa surface[19]. Cependant, il pourrait également s'agir d'une couche de glace[20],[21].

Zone habitable

La présence d'une planète dans la zone habitable circumstellaire peut permettre l'existence d'eau liquide[22],[23].

Dans le système solaire

La Terre est le seul corps du Système solaire où la présence d'eau liquide soit certaine. Mais dans de nombreux autres corps sa présence actuelle ou passée est probable, plausible ou possible.

Planètes

Terre

La Bille bleue : la Terre prise le par l'équipage d'Apollo 17 à une distance d'environ 45 000 kilomètres.

La Terre est le seul objet connu à ce jour où la présence d'eau liquide est certaine.

Mars

Conglomérat trouvé par le rover Curiosity à la surface de Mars. Il s'agit d'un indice de la présence d'un ancien cours d'eau asséché[24].
Coulées sombres saisonnières dans le cratère Newton, peut-être de l'eau liquide salée.

Dans le passé, Mars a pu accueillir de l'eau liquide sous forme de lacs, fleuves[25] ou même d'un océan dénommé Oceanus Borealis[26],[27]. Aujourd'hui, l'eau sur Mars est presque exclusivement présente sous forme de glace et d'une petite partie sous forme de vapeur. L'eau liquide peut néanmoins exister de manière transitoire sous certaines conditions. Il n'existe pas de grande étendue d'eau liquide car l'atmosphère de Mars est trop ténue (environ 600 pascals à la surface, soit environ 0,6 % de la pression atmosphérique terrestre au niveau de la mer) et la température globale est de −63 °C. Généralement, l'eau se sublime ou cristallise, sans passer par l'état liquide.

En la NASA annonce que des analyses d'images en provenance de la sonde Mars Reconnaissance Orbiter confirmeraient la présence d'eau liquide en surface sur Mars, sous la forme d'une solution saline concentrée[28],[29]. Des chlorates et des perchlorates joueraient le rôle d'antigel. L'équipe à l'origine de l'étude estime néanmoins qu'il serait « justifié » d'explorer les quatre sites ayant servi à cette analyse pour valider cette hypothèse[30]. Une étude publiée en a montré que les écoulements seraient finalement à sec[31]. En effet, les quantités d'eau nécessaires pour expliquer ces sources d'eau chaque année ne sont pas suffisantes dans l'atmosphère. Une source souterraine est aussi très improbable car les écoulements saisonniers (en anglais : recurring slope lineae, RSL) se forment parfois sur des sommets. La nouvelle hypothèse propose l'effet de pompe de Knudsen comme déclencheur des écoulements[31]. Cette étude a été complétée en [32].

Certaines mesures faites par Curiosity laissent penser que de l'eau liquide peut exister sous la surface de Mars, avec la découverte de la présence de perchlorate de calcium, un sel abaissant la température de fusion de l'eau, dans le sol martien[33]. Ainsi, des observations réalisées entre mai 2012 et décembre 2015 à l'aide de l'instrument MARSIS (en) de Mars Express et publiées en ont révélé une probable étendue d'eau liquide de 20 km de large sous 1,5 km de glace dans Planum Australe (près du pôle Sud)[34],[35].

Vénus

Vénus pourrait avoir abrité de l'eau liquide dans son passé[36]. Cette eau pourrait s'être ensuite évaporée, puis décomposée dans la haute atmosphère[37],[38].

Planètes naines

Cérès

Structure géologique potentielle de Cérès.

La présence de vapeur d'eau a été détectée dans l'atmosphère de Cérès. La présence de geysers expulsant de la vapeur d'eau sur Cérès peut être liée à l'existence d'un océan d'eau liquide sous sa surface[39],[40],[41]. Les taches claires de Cérès pourraient également avoir une origine hydrothermale et être issues d'eau liquide souterraine. L'existence dans le passé d'eau liquide qui s'est depuis solidifiée est également envisagée, suggérée par une présence importante de glace et sa séparation des couches de roches[42].

Éris

La présence d'un océan d'eau liquide sous la surface d'Éris est envisagée, dont l'existence théorique est facilitée par les forces de marées engendrées par son satellite Dysnomie. L'océan serait potentiellement associé à du cryovolcanisme[43].

Pluton

La présence d'un ancien océan souterrain, potentiellement encore présent, est envisagée sur Pluton[44]. Ainsi, l'émission de vapeur d'eau sur Pluton pourrait être liée à la présence d'un océan souterrain[45],[46], tout comme la présence de chasmata remplis de glace d'eau[47],[48].

Satellites naturels

Callisto (Jupiter IV)

Structure supposée (en anglais) de Callisto.

Callisto, une lune de Jupiter, possède un champ magnétique intense. Son intensité serait liée à la présence d'un océan d'eau liquide salée (un bon conducteur) sous sa surface[49],[50].

Charon (Pluton I)

Photographie de Charon prise par New Horizons en couleurs augmentées. Des chasmata au niveau de l'équateur sont visibles.

L'existence passée d'un océan d'eau liquide est une piste envisagée pour expliquer la présence d'un réseau de chasmata au niveau de l'équateur de Charon. Ces structures pourraient s'être formées lors du gel de l'océan[51],[52],[53].

Dioné (Saturne IV)

Dioné, un des plus grands satellites naturels de Saturne, abriterait également un océan d'eau liquide souterrain. Révélé par de petites variations de la forme et du champ de gravité de Dioné, cet océan serait enfoui sous environ 100 km de glace et épais de 65 km[54],[55].

Encelade (Saturne II)

Mécanisme possible des geysers de glace sur Encelade.
Structure supposée (en anglais) d'Encelade.

Certains indices laissent penser que Encelade, autre satellite de Saturne, pourrait disposer, comme Europe, d'une couche d'eau liquide sous une couche de glace. La présence de cryovolcanisme à sa surface est un indice important[56]. L'eau contenue dans ces geysers contient de petites quantités de sel[57], d'azote et d'hydrocarbures volatiles. Cet océan subsisterait grâce aux forces de marée générées par Saturne. Les oscillations du satellite enregistrées par la sonde Cassini-Huygens tendent à montrer la présence d'un océan d'eau liquide[58].

Europe (Jupiter II)

Structure supposée d'Europe.

Europe, un satellite de Jupiter, pourrait disposer d'une couche d'eau liquide sous sa surface glacée[59]. Cette eau pourrait demeurer dans cet état avec des forces de marée générant une chaleur suffisante pour maintenir cette couche liquide[60],[61] (voir Chauffage de l'océan d'Europe). La couche de glace située au-dessus de cet océan a une taille estimée entre 10 et 30 km, incluant une couche ductile de « glace chaude ». La faible présence de cratères en surface et l'existence d'epsomite dans la glace de surface d'Europe sont des indices importants de la présence d'un océan subglaciaire : elles montrent que cette glace a une origine profonde et qu'elle se renouvelle[62],[63].

Ganymède (Jupiter III)

Structure suposée de Ganymède.

Ganymède, un satellite de Jupiter, pourrait abriter un océan souterrain salé, selon des observations du télescope spatial Hubble de 2015[64]. Les motifs de ses aurores polaires et les oscillations de son champ magnétique le suggère. Selon les estimations, il mesurerait environ 100 km de profondeur et serait recouvert d'une croûte de glace d'environ 150 km.

Lune

Des scientifiques chinois ont produit en 2024 de l'eau à partir du sol lunaire ramené par Chang'e 5 en 2020. En chauffant le sol, ils ont extrait de l'hydrogène, essentiel pour les futures missions lunaires[65]

Mimas (Saturne I)

Un océan d'eau liquide entre la surface et le noyau est envisagé pour expliquer la structure interne de Mimas[66].

Titan (Saturne VI)

Structure supposée de Titan.

Titan, un satellite de Saturne possèderait un océan d'eau liquide très salé[67] sous sa surface. Cet océan serait recouvert d'une épaisse couche de glace[68]. Cette couche de glace serait très rigide, limitant les échanges avec l'extérieur. Ainsi, le méthane de l'atmosphère de Titan pourrait provenir d'éventuels points chauds présents dans l'océan, capable de ramollir cette glace[69]. il y aurait aussi probablement de la vapeur d'eau dans son atmosphère[70].

Triton (Neptune I)

Triton pourrait avoir possédé un océan d'eau liquide et d'ammoniac entre sa surface glacée et son noyau. Cet océan pourrait encore exister aujourd'hui[71]. La chaleur nécessaire à sa formation et son maintien pourrait provenir des forces de marée et de la désintégration radioactive[72]. Des cryovolcans sont présents en surface de la lune, ce qui est un indice en faveur de la présence d'un océan souterrain[73].

Petits corps

9P/Tempel (Tempel 1)

La comète Tempel 1 photographiée par Stardust.

La présence de minéraux argileux dans la comète Tempel 1 pourrait s'expliquer par l'existence d'eau liquide[74].

81P/Wild (Wild 2)

Impact d'une particule en provenance de Wild 2 dans le collecteur d'aérogel de Stardust.

La présence de minéraux se formant en présence d'eau liquide dans les échantillons de Wild 2 ramenés par Stardust pourrait s'expliquer par la formation de poches d'eau liquide dans la comète par le passé[75],[76].

(4) Vesta

Certaines ravines à la surface de l'astéroïde (4) Vesta suggèrent l'existence passée de coulées d'eau. Ces dernières se seraient formées par le chauffage de plaques de glace à la suite d'un impact[77],[78].

Hors du Système solaire

Hors du Système solaire, la présence d'eau liquide n'est pas encore certaine, mais elle est extrêmement probable : pour les planètes situées en zone habitable naturellement, mais aussi pour les sans doute nombreuses planètes-océans. De nombreux systèmes planétaires connus ont une constitution différentes du Système solaire, bien qu'il y ait probablement un biais d'échantillonnage découlant des méthodes de détection employées[79].

Planètes-océans

Vue d'artiste d'une planète-océan.

Planètes en zone habitable

Notes et références

  1. (en) NASA, « The Solar System and Beyond is Awash in Water », (consulté le ).
  2. (en) « Water Absorption Spectrum », sur Université de South Bank de Londres.
  3. (en) « Distant 'water-world' confirmed », sur BBC.
  4. (en) « Hubble reveals a new class of extrasolar planet », sur ScienceDaily.
  5. (en) Thomas Gold, « The deep, hot biosphere », Proceedins of the National Academy of Science, vol. 89,‎ , p. 6045-6049 (lire en ligne [PDF], consulté le ).
  6. « Eau sur Mars », sur CNRS.
  7. « Mars : de l'eau liquide s'infiltrerait dans le sol la nuit », sur Futura-Sciences.
  8. (en) B. E. Schmidt, D. D. Blankenship, G. W. Patterson et P. M. Schenk, « Active formation of ‘chaos terrain’ over shallow subsurface water on Europa », Nature, no 479,‎ , p. 502-505 (résumé).
  9. (en) Carolina Martinez, « Cassini Finds Enceladus Tiger Stripes are Really Cubs », Jet Propulsion Laboratory (JPL), NASA, .
  10. « Le voile se lève sur les geysers d'Encelade », sur Sciences et Avenir.
  11. « Hubble révèle des panaches d'eau de 200 km de hauteur sur Europe », sur Futura-Sciences.
  12. « Quand des scientifiques découvrent une centaine de geysers sur Encelade, une lune de Saturne », sur Atlantico.
  13. (en) « Europe », sur Astrofiles.
  14. geology.asu.edu, « Tidal Heating », sur web.archive.org.
  15. (en) Greenberg, Richard, Europa: The Ocean Moon: Search for an Alien Biosphere, 2005 (ISBN 978-3-540-27053-9).
  16. « Mysterious signal hints at subsurface ocean on Titan », sur Space.newscientist.com.
  17. (en) « Saturn moon may have hidden ocean », sur BBC News.
  18. a et b (en) Hauke Hussmann, « Subsurface oceans and deep interiors of medium-sized outer planet satellites and large trans-neptunian objects », Icarus, vol. 185,‎ , p. 258-273 (DOI 10.1016/j.icarus.2006.06.005, lire en ligne).
  19. « Dawn ne dévoilera pas tous les mystères de Cérès, l'étrange planète naine », sur Futura-Sciences.
  20. P.C Thomas, J.Wm. Parker, L.A. McFadden et al, « Differentiation of the asteroid Ceres as revealed by its shape », Nature, vol. 437,‎ , p. 224-226 (DOI 10.1038/nature03938, lire en ligne, consulté le ).
  21. « L'astéroïde Cérès dégage de la vapeur d'eau », sur lefigaro.fr.
  22. « Deux super-Terre dans une zone habitable », sur cieletespace.fr.
  23. « C'est quoi une planète en zone habitable ? », sur sciencesetavenir.fr.
  24. « Curiosity découvre un lit de rivière, aujourd’hui asséché », sur Futura-Sciences.
  25. « Le robot Curiosity a trouvé les traces d'un ancien lac d'eau douce sur Mars », sur L'Express.
  26. (en) « ‘Oceanus Borealis’ – Mars Express Finds New Evidence for Ancient Ocean on Mars », sur Universe Today.
  27. (en) « New Evidence For Ancient Ocean on Mars », sur Astrobiology.
  28. (en) Lujendra Ojha et al., « Spectral evidence for hydrated salts in recurring slope lineae (RSL) on Mars », sur Nature Geoscience, .
  29. « Il y a de l'eau liquide sur Mars, selon la Nasa », sur Huffington Post, .
  30. « De l’eau salée s’écoulerait sur la planète Mars », sur Le Monde.
  31. a et b (en) Formation of recurring slope lineae on Mars by rarefied gas-triggered granular flows. F. Schmidt, F. Andrieu, F. Costard, M. Kocifaj and A. G. Meresescu, Nature Geoscience, 20 March 2017. DOI 10.1038/ngeo2917.
  32. (en) Colin M. Dundas, Alfred S. McEwen, Matthew Chojnacki et Moses P. Milazzo, « Granular flows at recurring slope lineae on Mars indicate a limited role for liquid water », Nature Geoscience,‎ (ISSN 1752-0908, DOI 10.1038/s41561-017-0012-5, lire en ligne, consulté le ).
  33. « De l’eau liquide sous la surface de Mars? », sur BFM TV.
  34. (en) R. Orosei, S. E. Lauro, E. Pettinelli, A. Cicchetti, M. Coradini, B. Cosciotti, F. Di Paolo, E. Flamini, E. Mattei, M. Pajola, F. Soldovieri, M. Cartacci, F. Cassenti, A. Frigeri, S. Giuppi, R. Martufi, A. Masdea, G. Mitri, C. Nenna, R. Noschese, M. Restano et R. Seu, « Radar evidence of subglacial liquid water on Mars », American Association for the Advancement of Science (AAAS),‎ , eaar7268 (ISSN 0036-8075, DOI 10.1126/science.aar7268).
  35. « Le radar de Mars Express aurait détecté un vaste lac d'eau liquide sous le sol de Mars », Sciences et Avenir, (consulté le ).
  36. (en) « Venus may have had continents and oceans », Nature.
  37. (en) « Where Venus' Water Went », sur Space.com.
  38. (en) « ‘Electric Wind’ Can Strip Earth-like Planets of Oceans, Atmospheres », sur NASA.
  39. « Découverte : des geysers sur Cérès ! », sur Ciel et Espace.
  40. (en) « Dawn spacecraft unraveling mysteries of ceres intriguing bright spots as sublimating salt water residues », sur Universe Today.
  41. (en) « Recent Hydrothermal Activity May Explain Ceres' Brightest Area »(Archive.orgWikiwixArchive.isGoogleQue faire ?), sur nasa.gov, .
  42. Alexandra Witze, « Solar System’s biggest asteroid is an ancient ocean world », Nature,‎ (DOI 10.1038/nature.2016.21166, lire en ligne, consulté le ).
  43. (en) Prabal Saxena, Joe P. Renaud, Wade G. Henning, Martin Jutzi et Terry Hurford, « Relevance of tidal heating on large TNOs », Icarus, vol. 302,‎ , p. 245–260 (DOI 10.1016/j.icarus.2017.11.023, lire en ligne, consulté le ).
  44. (en) Guillaume Robuchon et Francis Nimmo, « Thermal evolution of Pluto and implications for surface tectonics and a subsurface ocean », Icarus, vol. 216, no 2,‎ , p. 426–439 (DOI 10.1016/j.icarus.2011.08.015, lire en ligne, consulté le ).
  45. « Pluton révèle des vapeurs dans l'atmosphère et des glaces mouvantes », sur L'Express.
  46. « De nouvelles images de Pluton étonnent la Nasa », sur Le Figaro.
  47. (en) « New Horizons Finds Blue Skies and Water Ice on Pluto »(Archive.orgWikiwixArchive.isGoogleQue faire ?), sur NASA.
  48. (en) « Pluto could be huge dirty snowball with life inside underground ocean », sur express.co.uk.
  49. (en) « Callisto makes a big splash », sur NASA Science.
  50. « Callisto's watery secret », Nature.
  51. « New Horizons dévoile en vidéo Charon, l'étrange lune cabossée », sur Futura-Sciences.
  52. (en) « Pluto's Big Moon Charon Reveals a Colorful and Violent History », sur NASA.
  53. « Images of Pluto and Charon continue to captivate Nasa: 'This world is alive' », sur The Guardian.
  54. (en) « Un océan d’eau liquide souterrain découvert sur Dioné, lune de Saturne », .
  55. (en) Mikael Beuthe, Attilio Rivoldini et Anthony Trinh, « Enceladus's and Dione's floating ice shells supported by minimum stress isostasy », Geophysical Research Letters,‎ 9 octobre 2016 (en ligne) (DOI 10.1002/2016GL070650).
  56. « Un océan caché sous la banquise d’Encelade », Science et vie.
  57. « Encelade met du sel dans les anneaux de Saturne ! », sur Futura-Sciences.
  58. (en) « Cassini Finds Global Ocean in Saturn's Moon Enceladus », sur NASA.
  59. Sylvestre Huet, « Sous la glace d'Europe, un océan. Son champ magnétique détecté par la sonde Galiléo renforce l'hypothèse d'une vaste mer sur la lune de Jupiter. », Libération, .
  60. « Les marées, principale source de chaleur de l'océan d'Europe ? », sur Futura-sciences.
  61. (en) « Tidal heating in an internal ocean model of Europa », Nature.
  62. « Sur Europe, les glaces de surface révèlent un océan », sur Futura-Sciences.
  63. « Europe, satellite de Jupiter », sur CNRS.
  64. « La plus grosse lune de Jupiter a un océan sous sa croûte glacée plus vaste que ceux de la Terre », sur 20minutes.fr 20 minutes.
  65. La Chine réussit à produire de l'eau à partir du sol lunaire, Science et Vie, 25 août 2024 (consulté le 26 août 2024).
  66. (en) « Saturn Moon May Hide a 'Fossil' Core or an Ocean », sur NASA.
  67. « L'océan de Titan trop salé pour abriter la vie ? », Le Point.
  68. « L'océan de Titan serait vraiment très salé », sur Futura science.
  69. (en) « Saturn's moon Titan has a very salty ocean », sur NASA Science.
  70. V. Cottini, C. A. Nixon, D. E. Jennings, C. M. Anderson, N. Gorius, G.L. Bjoraker, A. Coustenis, N. A. Teanby, R. K. Achterberg, B. Bézard, R. de Kok, E. Lellouch, P. G. J. Irwin, F. M. Flasar et G. Bampasidis, « Water vapor in Titan's stratosphere from Cassini CIRS far-infrared spectra », Icarus, vol. 220, no 2,‎ , p. 855–862 (DOI 10.1016/j.icarus.2012.06.014, Bibcode 2012Icar..220..855C).
  71. (en) « Does Neptune's Moon Triton Have a Subsurface Ocean? », sur Space.
  72. (en) « Is Triton Hiding an Underground Ocean? », sur Universe Today.
  73. « Triton, satellite de Neptune, pourrait abriter un océan », sur Futura-Sciences.
  74. (en) « Liquid water and organics in Comets: implications for exobiology », sur International Journal of Astrobiology.
  75. (en) « Frozen comet's watery past: Discovery challenges paradigm of comets as 'dirty snowballs' frozen in time », Sciencedaily.com, (DOI 10.1016/j.gca.2011.03.026, consulté le ).
  76. (en) « Comet Samples Reveal Surprising Signs of Liquid Water », sur Space.com.
  77. (en) « Gullies on Vesta Suggest Past Water-Mobilized Flows », sur NASA.
  78. « Geomorphological evidence for transient water flow on Vesta », sur ScienceDirect.
  79. « Trois exoplanètes en zone habitable », sur sciences.blogs.liberation.fr, Libération.

Lien externe

Read other articles:

British TV series or programme Hotel TrubbleTitle card used from Series 2 onwards, showing (l-r) Tanya Franks (Dolly), Dominique Moore (Sally), Sam Phillips (Jamie), Sheila Bernette (Mrs. Poshington) and Gary Damer (Lenny).GenreComedy dramaDeveloped byBBCFilm and General Productions LtdDirected byNatalie BaileyStarringDominique Moore Sam Phillips Gary Damer Sheila Bernette Tanya Franks (Series 2–3)Susan Wokoma (Series 3)Country of originUnited KingdomOriginal languageEnglishNo. of series3No. o…

Baochuan beralih ke halaman ini. Untuk kota di Korea, lihat Pocheon. Sketsa kapal Zheng He / Cheng Ho dengan empat tiang Sejarah Dinasti Ming Nama Da bo (harfiah: kapal besar) sebesar 2,000 liao, hai po, hai chuan (harfiah: kapal pengarung laut)Dipesan 1403Pembangun Galangan kapal Longjiang, dinasti MingBeroperasi 1405Tidak beroperasi 1433Catatan Ikut dalam: Pelayaran pertama Zheng He (1405–1407)Pelayaran kedua Zheng He (1407–1409)Pelayaran ketiga Zheng He (1409–1411)Pelayaran keempat Zhen…

Insurgency in Kenya from 1952 to 1960 This article is about the conflict in Kenya. For other uses, see Mau Mau (disambiguation). Mau Mau rebellionPart of the decolonisation of AfricaTroops of the King's African Rifles on watch for Mau Mau rebelsDate1952–1960LocationBritish KenyaResult British victoryBelligerents  United Kingdom Kenya Uganda  Southern Rhodesia Mau Mau rebels[a] Kenya Land and Freedom ArmyCommanders and leaders Winston Churchill(1951–1955) Anthony Eden(1955…

American coal company Peabody Energy, Inc.Company typePublicTraded asNYSE: BTURussell 2000 ComponentS&P 600 ComponentIndustryCoal miningFounded1883 (1883) (Chicago, Illinois, US)HeadquartersSt. Louis, Missouri, USKey peopleJames Grech, President and CEO[1]Revenue$4.981 billion (2022) $3.318 billion (2021)[2]Operating income US$1.4 billion (2022)[2]Total equityUS$3.3 billion (2023)[2]Number of employees5,500[3] (2023)Websitewww.peabodyene…

Political party in Bosnia and Herzegovina Bosnian Movement of National Pride Bosanski pokret nacionalnog ponosaFounded5 January 2009HeadquartersSarajevoIdeologyNeo-NazismBosniak nationalismUltranationalismThird PositionHard EuroscepticismSecularismAnti-Serbian sentimentAnti-Croatian sentimentAntisemitismPolitical positionFar-rightColours     Ethnic groupBosniaksWebsitewww.bosanskinacionalisti.orgPolitics of Bosnia and HerzegovinaPolitical partiesElections The Bosnian Move…

Untuk kegunaan lain, lihat Santo Domingo (disambiguasi). Istana Presiden Republik Dominika Santo Domingo de GuzmánIbu Kota Lambang kebesaranMotto: Ciudad Primada de América (dalam bahasa Spanyol)(Kota Pertama Amerika)Negara Republik DominikaProvinsiDistrik NasionalDidirikan5 August 1496 (528 years ago)PendiriBartholomew ColumbusDinamai berdasarkanSaint DominicPemerintahan • WalikotaCarolina MejíaLuas[1] • Total104,44 km2 (4,032…

Akina Nakamori中森 明菜Informasi latar belakangLahir13 Juli 1965 (umur 58)AsalKiyose, Tokyo, JepangGenreJ-popkayōkyokuPekerjaanPenyanyiaktrisproduserTahun aktif1982–sekarangLabel Warner Pioneer MCA Victor Gauss @ease Universal Situs webnakamoriakina.com Akina Nakamori (中森明菜code: ja is deprecated , Nakamori Akina, lahir 13 Juli 1965) adalah seorang penyanyi, dan aktris berkebangsaan Jepang. Ia adalah salah satu artis paling populer dan terlaris di Jepang.[1] Referensi …

República Dominicana en los Juegos Paralímpicos Bandera de República DominicanaCódigo CPI DOMCPN Comité Paralímpico DominicanoJuegos Paralímpicos de Tokio 2020Deportistas 5Medallas 0 0 0 0 Historia paralímpicaJuegos de verano 1992 • 1996 • 2000 • 2004 • 2008 • 2012 • 2016 • 2020 •[editar datos en Wikidata] La República Dominicana estuvo representada en los Juegos Paralímpicos de Tokio 2020…

سردينيا   الإحداثيات 40°N 9°E / 40°N 9°E / 40; 9   [1] تقسيم إداري  البلد إيطاليا  التقسيم الأعلى إيطاليا  خصائص جغرافية  المساحة 23949 كيلومتر مربع  ارتفاع 384 متر  عدد السكان  عدد السكان 1628384 (2020)  الكثافة السكانية 67.99 نسمة/كم2 معلومات أخرى منطقة زم…

مصطفى الكاظمي رئيس مجلس الوزراء العراقي[1] في المنصب7 مايو 2020 – 27 أكتوبر 2022 الرئيس برهم صالح عادل عبد المهدي محمد شياع السوداني رئيس جهاز المخابرات الوطني العراقي في المنصب7 يونيو 2016 – 9 أبريل 2020 [بحاجة لمصدر] رئيس الوزراء حيدر العبادي زهير الغرباوي [2] رائد جوحي مع…

Pinsk ПінскПинск LambangNegara BelarusVoblastBrest VoblastRaionPinsk RaionDidirikan1097Populasi (Sensus 1999) • Total129.935Zona waktuUTC+2 (EET) • Musim panas (DST)UTC+3 (EEST)Kode pos225700—225716, 225745Kode area telepon+375 165Plat kendaraan1Situs webwww.pinsk.by Pinsk (bahasa Belarus: Пінск, bahasa Rusia: Пинск) ialah sebuah kota di Belarus, di daerah Polesia, dilintasi sungai Prypiać, pada pertemuan Sungai Strumen dan Pina. D…

Official repository of documents from the Australian Government National Archives of AustraliaAgency overviewFormedMarch 1961Preceding agenciesCommonwealth Archives Office (part of the NLA)Australian ArchivesJurisdictionGovernment of AustraliaHeadquartersKings Avenue, Parkes, ACT35°18′18″S 149°07′50″E / 35.304877°S 149.130574°E / -35.304877; 149.130574Employees404 (2017–18)[1]Annual budgetA$82.733 million (2018–19)[2]Minister responsibleTon…

Duché de SaxeHerzogtum Sachsen 804–1296 La Saxe au sein du Saint-Empire (v. 1000).Informations générales Statut Monarchie et duché ethnique- Empire carolingien (843-911) - Francie orientale (911-962)- Saint-Empire (962-1296) Langue(s) Latin Religion Christianisme Histoire et événements 804 Formation par Charlemagne après la guerre des Saxons. 1137 Ascendance de la Maison Welf. 1142 Expansion par conquête. 1180 Les Welfs sont écartés au profit de la Maison d'Ascanie. 1260 Le duché es…

1991 Canadian filmNo Skin Off My AssDirected byBruce LaBruceWritten byBruce LaBruceStarringBruce LaBruceG. B. JonesKlaus von BrückerDistributed byStrand ReleasingRelease date 1991 (1991) Running time73 minutesCountryCanadaLanguageEnglish No Skin Off My Ass is a 1991 comedy-drama film by Bruce LaBruce. LaBruce's debut feature film provides a template for many of the themes in LaBruce's later movies. Explicit sex scenes between LaBruce's character and von Brucker's are interwoven with a radi…

Building in Derbyshire, EnglandShipley HallShipley Hall in the 1890sLocation in Derbyshire, EnglandGeneral informationTown or cityDerbyshireCountryEnglandCoordinates52°59′37″N 1°20′55″W / 52.9937°N 1.3486°W / 52.9937; -1.3486Completed1799Demolished1943ClientMiller Mundy familyDesign and constructionArchitect(s)William Linley Shipley Hall was a country estate in Shipley, Derbyshire near Heanor and Ilkeston which now forms a Country Park. Early history The Shipl…

City in Russia For other places with the same name, see Krasnogorsk. City in Moscow Oblast, RussiaKrasnogorsk КрасногорскCity[1]Crocus City FlagCoat of armsLocation of Krasnogorsk KrasnogorskLocation of KrasnogorskShow map of Moscow OblastKrasnogorskKrasnogorsk (European Russia)Show map of European RussiaKrasnogorskKrasnogorsk (Europe)Show map of EuropeCoordinates: 55°49′18″N 37°20′19″E / 55.82167°N 37.33861°E / 55.82167; 37.33861CountryRuss…

Book by Peter Pohl First edition (publ. AWE/Geber) Vi kallar honom Anna (We call him Anna) is a 1987 Swedish novel by Peter Pohl. It is about Anders, a boy visiting a summer camp who is severely bullied. It is written from the perspective of Micke, one of the leaders of the summer camp. Vi kallar honom Anna has been translated into Dutch (We noemen hem Anna, 1993), German (Nennen wir ihn Anna, 1991), Danish (Vi kalder ham Anna, 1989) and Norwegian (Vi kaller ham Anna, 1989). It is the fifth book…

State electoral district of Victoria, Australia Australian electorate WarrandyteVictoria—Legislative AssemblyLocation of Warrandyte (dark green) in Greater MelbourneStateVictoriaCreated1976MPNicole WernerPartyLiberalNamesakeWarrandyteElectors43,282 (2018)Area107 km2 (41.3 sq mi)DemographicOuter metropolitanCoordinates37°45′36″S 145°13′48″E / 37.76000°S 145.23000°E / -37.76000; 145.23000 The electoral district of Warrandyte is an Australia…

Canadian civilian honour for merit Order of New BrunswickOrdre du Nouveau Brunswick Awarded by the lieutenant governor of New BrunswickTypeProvincial orderFoundedDecember 2000EligibilityAny Canadian citizen presently or formerly resident in New Brunswick, save for politicians and judges while still in office.Awarded forExcellence, achievement, and outstanding contribution to the social, cultural, or economic well-being of New Brunswick and its residents.StatusCurrently constitutedFounderMarilyn …

Not to be confused with Party of Regions. Political party in Poland Party of Regions Partia RegionówAbbreviationPR[1]LeaderBolesław BorysiukFounderKrzysztof Filipek[2]Founded24 November 2007Registered25 February 2008[3]Dissolved16 January 2017Split fromSRPHeadquartersSzlachecka 48, 03-259 WarsawYouth wingSekcja Młodych Partii Regionów[4]Membership (2008)2000[5]IdeologyAgrarianism[6][7]Socialism[8]Anti-neoliberalism[…