Viloxazine was first described by 1972[10] and was marketed as an antidepressant in Europe in 1974.[6][11] It was not marketed in the United States at this time.[12] The medication was discontinued in 2002 for commercial reasons.[6][13][14] However, it was repurposed for the treatment of ADHD and was reintroduced, in the United States, in April 2021.[6][15][16] Viloxazine is a non-stimulant medication; it has no known misuse liability and is not a controlled substance.[1]
Analyses of clinical trial data suggest that viloxazine produces moderate reductions in symptoms; it is about as effective as atomoxetine and methylphenidate but with fewer side effects.[7][8][9]
Depression
Viloxazine was previously marketed as an antidepressant for the treatment of major depressive disorder.[6][5] It was considered to be effective in mild to moderate as well as severe depression with or without co-morbid symptoms.[6] The typical dose range for depression was 100 to 400mg per day in divided doses administered generally two to three times per day.[6]
Available forms
Viloxazine is available for ADHD in the form of 100, 150, and 200 mg extended-releasecapsules.[1] These capsules can be opened and sprinkled into food for easier administration.[1]
There were three cases of seizure worldwide, and most animal studies (and clinical trials that included epilepsy patients) indicated the presence of anticonvulsant properties, so viloxazine is not completely contraindicated in patients with epilepsy.[20]
Interactions
Viloxazine increased plasma levels of phenytoin by an average of 37%.[21] It also was known to significantly increase plasma levels of theophylline and decrease its clearance from the body,[22] sometimes resulting in accidental overdose of theophylline.[23]
More recent research has found that the pharmacodynamics of viloxazine may be more complex than previously assumed.[6][25] In 2020, viloxazine was reported to have significant affinity for the serotonin 5-HT2B and 5-HT2C receptors (Ki = 3,900 nM and 6,400 nM) and to act as an antagonist and agonist of these receptors, respectively.[25][5][28] It also showed weak antagonistic activity at the serotonin 5-HT7 receptor and the α1B- and β2-adrenergic receptors.[25][5][28] These actions, although relatively weak, might be involved in its effects and possibly its therapeutic effectiveness in the treatment of ADHD.[6][25][28]
Pharmacokinetics
Absorption
The bioavailability of extended-release viloxazine relative to an instant-release formulation was about 88%.[1]Peak and AUCTooltip area-under-the-curve (pharmacokinetics) levels of extended-release viloxazine are proportional over a dosage range of 100 to 400 mg once daily.[1] The time to peak levels is 5 hours with a range of 3 to 9 hours after a single 200 mg dose.[1] A high-fat meal modestly decreases levels of viloxazine and delays the time to peak by about 2 hours.[1]Steady-state levels of viloxazine are reached after 2 days of once-daily administration and no accumulation occurs.[1] Levels of viloxazine are approximately 40 to 50% higher in children age 6 to 11 years compared to children age 12 to 17 years.[1]
Distribution
The plasma protein binding of viloxazine is 76 to 82% over a concentration range of 0.5 to 10 μg/mL.[1]
The elimination of viloxazine is mainly renal.[1] Approximately 90% of the dose is excreted in urine within 24 hours and less than 1% of the dose is recovered in feces.[1]
The elimination half-life of instant-release viloxazine is 2 to 5 hours (2–3 hours in the most reliable studies)[2] and the half-life of extended-release viloxazine is 7.02 ± 4.74 hours.[1]
The medication was first marketed in 1974.[6][11] Viloxazine was not approved for medical use by the FDA.[12] In 1984, the FDA granted the medication an orphan designation for treatment of cataplexy and narcolepsy with the tentative brand name Catatrol.[31] For unknown reasons however, it was never approved or introduced for these uses in the United States.[6] Viloxazine was withdrawn from markets worldwide in 2002 for commercial reasons unrelated to efficacy or safety.[6][13][14]
As of 2015, Supernus Pharmaceuticals was developing extended release formulations of viloxazine as a treatment for ADHD and major depressive disorder under the names SPN-809 and SPN-812.[32][33] Viloxazine was approved for the treatment of ADHD in the United States in April 2021.[15][16]
The benefit of viloxazine was evaluated in three clinical studies, including two in children (ages 6 to 11 years) and one in adolescents (ages 12 to 17 years) with ADHD.[34] In each study, pediatric participants were randomly assigned to receive one of two doses of viloxazine or placebo once daily for 6 to 8 weeks.[34] None of the participants, their parent(s)/caregiver(s), the study sponsor, or the study doctors knew which treatment the participant received during the study.[34] The severity of ADHD symptoms observed at the last week of treatment was significantly greater in participants who received placebo compared with participants who received viloxazine.[34] The severity of ADHD symptoms was assessed using the Attention-Deficit Hyperactivity Disorder Rating Scale 5th Edition (ADHD-RS-5).[34] A fourth study provided information about the safety of viloxazine in adolescents 12 to 17 years of age with ADHD.[34] The FDA approved viloxazine based on evidence from several clinical trial(s) of 1289 participants with attention deficit hyperactivity disorder (ADHD).[34] The trials were conducted at 59 sites in the United States.[34]
Society and culture
Brand names
Viloxazine has been marketed under the brand names Emovit, Qelbree, Vicilan, Viloxazin, Viloxazina, Viloxazinum, Vivalan, and Vivarint.[6][35]
Research
Viloxazine has undergone two randomized controlled trials for nocturnal enuresis (bedwetting) in children, both of those times versus imipramine.[36][37] By 1990, it was seen as a less cardiotoxic alternative to imipramine, and to be especially effective in heavy sleepers.[38]
In narcolepsy, viloxazine has been shown to suppress auxiliary symptoms such as cataplexy and also abnormal sleep-onset REM[39] without significantly improving daytime somnolence.[40] In a cross-over trial (56 participants) viloxazine significantly reduced EDS and cataplexy.[14]
Viloxazine has also been studied for the treatment of alcoholism, with some success.[41]
Viloxazine did not demonstrate efficacy in a double-blind randomized controlled trial versus amisulpride in the treatment of dysthymia.[42]
^ abcPinder RM, Brogden RN, Speight TM, Avery GS (June 1977). "Viloxazine: a review of its pharmacological properties and therapeutic efficacy in depressive illness". Drugs. 13 (6): 401–421. doi:10.2165/00003495-197713060-00001. PMID324751. S2CID44804763.
^Case DE, Reeves PR (February 1975). "The disposition and metabolism of I.C.I. 58,834 (viloxazine) in humans". Xenobiotica; the Fate of Foreign Compounds in Biological Systems. 5 (2): 113–129. doi:10.3109/00498257509056097. PMID1154799.
^"SID 180462". PubChem Substance Summary. U.S. National Library of Medicine. Archived from the original on 14 June 2013. Retrieved 5 November 2005.
^ abBushe C, Day K, Reed V, Karlsdotter K, Berggren L, Pitcher A, et al. (May 2016). "A network meta-analysis of atomoxetine and osmotic release oral system methylphenidate in the treatment of attention-deficit/hyperactivity disorder in adult patients". Journal of Psychopharmacology. 30 (5): 444–458. doi:10.1177/0269881116636105. PMID27005307. S2CID104938.{{cite journal}}: CS1 maint: overridden setting (link)
^ abOlivier B, Soudijn W, van Wijngaarden I (2000). "Serotonin, dopamine and norepinephrine transporters in the central nervous system and their inhibitors". Progress in Drug Research. Fortschritte der Arzneimittelforschung. Progres des Recherches Pharmaceutiques. Vol. 54. pp. 59–119. doi:10.1007/978-3-0348-8391-7_3. ISBN978-3-0348-9546-0. PMID10857386.
^ abDahmen MM, Lincoln J, Preskorn S (2010). "NARI Antidepressants". In Stolerman IP (ed.). Encyclopedia of Psychopharmacology. Berlin Heidelberg: Springer-Verlag. pp. 816–822. ISBN9783540687061.
^ abcWilliams DA (2012). "Chapter 18: Antidepressants.". In Lemke TL, Williams DA (eds.). Foye's Principles of Medicinal Chemistry. Lippincott Williams & Wilkins. ISBN9781609133450.
^Chebili S, Abaoub A, Mezouane B, Le Goff JF (1998). "[Antidepressants and sexual stimulation: the correlation]" [Antidepressants and sexual stimulation: the correlation]. L'Encephale (in French). 24 (3): 180–184. PMID9696909.
^Poznanski AJ, Akinyemi E (September 2022). "Recent Advances in Psychopharmacology". Advances in Psychiatry and Behavioral Health. 2 (1): 253–266. doi:10.1016/j.ypsc.2022.03.009. S2CID252258910.
^Perault MC, Griesemann E, Bouquet S, Lavoisy J, Vandel B (September 1989). "A study of the interaction of viloxazine with theophylline". Therapeutic Drug Monitoring. 11 (5): 520–522. doi:10.1097/00007691-198909000-00005. PMID2815226.
^ abTatsumi M, Groshan K, Blakely RD, Richelson E (December 1997). "Pharmacological profile of antidepressants and related compounds at human monoamine transporters". European Journal of Pharmacology. 340 (2–3): 249–258. doi:10.1016/s0014-2999(97)01393-9. PMID9537821.
^Richelson E, Nelson A (July 1984). "Antagonism by antidepressants of neurotransmitter receptors of normal human brain in vitro". The Journal of Pharmacology and Experimental Therapeutics. 230 (1): 94–102. PMID6086881.
^Wander TJ, Nelson A, Okazaki H, Richelson E (December 1986). "Antagonism by antidepressants of serotonin S1 and S2 receptors of normal human brain in vitro". European Journal of Pharmacology. 132 (2–3): 115–121. doi:10.1016/0014-2999(86)90596-0. PMID3816971.
^Danchev ND, Rozhanets VV, Zhmurenko LA, Glozman OM, Zagorevskiĭ VA (May 1984). "[Behavioral and radioreceptor analysis of viloxazine stereoisomers]" [Behavioral and radioreceptor analysis of viloxazine stereoisomers]. Biulleten' Eksperimental'noi Biologii I Meditsiny (in Russian). 97 (5): 576–578. PMID6326891.
^Wermuth CG (2006). "Chapter 1: Analogs as a Means of Discovering New Drugs.". In Fischer J, Ganellin CR (eds.). Analogue-based Drug Discovery. John Wiley & Sons. ISBN978352760749-5.
^Attenburrow AA, Stanley TV, Holland RP (January 1984). "Nocturnal enuresis: a study". The Practitioner. 228 (1387): 99–102. PMID6364124.
^^ Yurdakök M, Kinik E, Güvenç H, Bedük Y (1987). "Viloxazine versus imipramine in the treatment of enuresis". The Turkish Journal of Pediatrics. 29 (4): 227–230. PMID3332732.
^Libert MH (1990). "[The use of viloxazine in the treatment of primary enuresis]" [The use of viloxazine in the treatment of primary enuresis]. Acta Urologica Belgica (in French). 58 (1): 117–122. PMID2371930.
^Altamura AC, Mauri MC, Girardi T, Panetta B (1990). "Alcoholism and depression: a placebo controlled study with viloxazine". International Journal of Clinical Pharmacology Research. 10 (5): 293–298. PMID2079386.