Paleontology or palaeontology is the study of prehistoriclife forms on Earth through the examination of plant and animal fossils.[1] This includes the study of body fossils, tracks (ichnites), burrows, cast-off parts, fossilised feces (coprolites), palynomorphs and chemical residues. Because humans have encountered fossils for millennia, paleontology has a long history both before and after becoming formalized as a science. This article records significant discoveries and events related to paleontology that occurred or were published in the year 2025.
A crinoid belonging to group Camerata and to the family Colpodecrinidae. The type species is K. stellatus. Published online in 2025, but the issue date is listed as December 2024.
Echinoderm research
Guenser et al. (2025) report evidence of concentration of research on the fossil record of stylophorans in the higher-income countries, regardless of the origin of the studied fossil material, throughout the history of the study of this group, including evidence that the majority of studies on fossils from the Global South published between 1925 and 1999 did not include local collaborators, and evidence of transfer of fossil material from countries of the Global South to countries of the Global North.[9]
The type species is "Scolopodus" consimilis Moskalenko, (1973); genus also includes A. compositus (Moskalenko, 1973). Published online in 2025, but the issue date is listed as December 2024.
A study on the parasphenoids of Early Triassic trematosauroids and capitosaurs from the European part of Russia, providing evidence of differences of the levator scapulae muscles of the studied temnospondyls that were likely related to differences of their lifestyles, is published by Morkovin (2025).[12]
A study on the structure of tissue of the dermal pectoral bones of Metoposaurus krasiejowensis is published by Kalita, Teschner & Konietzko-Meier (2025).[13]
Medina et al. (2025) provide new information on the anatomy of the cranial endocast of Massetognathus pascuali, and describe the maxillary canal of the studied cynodont.[15]
New specimen of Exaeretodon riograndensis, providing new information on the postcranial anatomy of members of this species, is described by Kerber et al. (2025).[16]
Dotto et al. (2025) describe fossil material of a prozostrodontian cynodont from the Upper Triassic strata from the Buriol site (Hyperodapedon Assemblage Zone, Brazil), providing new information on the morphological diversity of teeth of Carnian probainognathians.[18]
Tumelty & Lautenschlager (2025) study the skull anatomy of Hadrocodium wui, and interpret the studied mammaliaform as not fully fossorial.[19]
A hexactinellid sponge. The type species is P. verrucosus.
Other animal research
A study on possible causes of decline of stromatoporoid diversity during the early Devonian is published by Stock et al. (2025).[21]
Evidence from the study of Cambrian scalidophoran fossils, interpreted as indicating that the ventral nerve cord was ancestrally unpaired in scalidophorans, priapulids and possibly ecdysozoans in general, is presented by Wang et al. (2025).[22]
A study on fossil material of the tommotiidLapworthella fasciculata from the Cambrian strata in Australia is published by Bicknell et al. (2025), who report evidence of increase of thickness of sclerites of L. fasciculata and increase of the frequency of perforated sclerites through time, and interpret these findings as the oldest evidence of evolutionary arms race between predator and prey reported to date.[23]
Ma et al. (2025) describe fossil material of Pomatrumcf.P. ventralis from the Balang Formation (China), extending known range of this species to Cambrian Stage 4 and representing its first known record from outside the Chengjiang Biota.[24]
Review of changes of organismal and community ecology during the Ediacaran-Cambrian transition is published by Mitchell & Pates (2025)[27]
Reijenga & Close (2025) study the fossil record of Phanerozoic marine animals, and argue that purported evidence of a relationship between the duration of studied clades and their rates of origination and extinction can be explained by incomplete fossil sampling.[28]
Maletz et al. (2025) revise Paleozoic fossils with similarities to feathers, and interpret the studied fossil material as including remains of macroalgae, hydrozoan cnidarians and graptolites.[29]
Vinn et al. (2025) report new evidence of symbiotic associations between worms and tabulate corals from the Ordovician and Silurian strata in Estonia, including evidence of symbiotic relationships between tabulates and cornulitids spanning from the late Katian to the Ludfordian.[30]
Zong et al. (2025) report the discovery of a new assemblage of well-preserved fossils (the Huangshi Fauna) in the Silurian (Rhuddanian) strata in south China, including fossils of sponges, cephalopods, arthropods and carbon film fossils of uncertain identity.[31]
A study on the assemblage of fossil teeth from the Middle Triassic (Anisian) strata from the Montseny area (Spain), providing evidence of presence of capitosaur temnospondyls, procolophonids, archosauromorphs and indeterminate diapsids, is published by Riccetto et al. (2025).[32]
Stone et al. (2025) compare the composition of Pliensbachian reefs from lagoonal and platform edge settings in the Central High Atlas (Morocco), and identify environmental differences resulting in development of two different reef types.[33]
Perea et al. (2025) report the discovery of bioerosion traces on dinosaur bones from the Upper Cretaceous Guichón Formation (Uruguay), interpreted as likely produced by beetles (probably dermestids) and small vertebrate scavengers (possibly multituberculate mammals).[34]
Other research
Evidence of a link between marine iodine cycle and stability of the ozone layer throughout Earth's history, resulting in an unstable ozone layer until approximately 500 million years ago that might have restricted complex life to the ocean prior to its stabilization, is presented by Liu et al. (2025).[35]
Evidence of slow accumulation of Australian sediments preserving Archean mudrocks with high organic content is presented by Lotem et al. (2025), who interpret their findings as consistent with lower primary productivity in Archean than in present times.[36]
Cowen et al. (2025) study the geochemistry of dental tissue of Devonianfish fossils from Svalbard (Norway) and Cretaceouslungfish and plesiosaur fossils from Australia, and interpret their findings as indicative of preservation of the primary chemical composition of the bioapatite in the studied fossils.[37]
Albert et al. (2025) provide new information on the Cretaceous Densuș-Ciula Formation (Romania), reporting evidence indicating that the lower part of the formation covers part of the Campanian, and evidence indicating that the shift from marine to continental deposition recorded in the formation happened by middle late Campanian.[38]
Rodiouchkina et al. (2025) report evidence interpreted as indicating that the amount of sulfur released by Chicxulub impact was approximately 5 times lower than inferred from previous estimates, resulting in milder impact winter scenario during the Cretaceous-Paleogene transition.[39]
Paleoclimate
Evidence of low atmospheric CO2 levels throughout the main phase of the late Paleozoic icehouse, and of rapid increase in atmospheric CO2 between 296 and 291 million years ago, is presented by Jurikova et al. (2025).[40]
Lu et al. (2025) report evidence from the study of palynological assemblages and clay mineralogy of the Kazuo Basin (Liaoning, China) indicative of a dry and hot climatic event during the early Aptian, interpreted as likely synchronous with the Selli Event.[41]
Evidence indicating that abrupt climate changes during the Last Glacial Period increased pyrogenic methane emissions and global wildfire extent is presented by Riddell-Young et al. (2025).[42]
Geochemical evidence from the study of a speleothem from the Herbstlabyrinth Cave (Germany), interpreted as indicating that the Laacher See eruption was not directly linked to the Younger Dryas cooling in Greenland and Europe, is presented by Warken et al. (2025).[43]
References
^Gini-Newman, Garfield; Graham, Elizabeth (2001). Echoes from the past: world history to the 16th century. Toronto: McGraw-Hill Ryerson Ltd. ISBN9780070887398. OCLC46769716.
^Kundu, S.; Tarafder, E.; Karunarathna, S. C.; Khan, M. A. (2025). "The discovery of a new foliicolous microthyriaceous fungus associated with Quercus L. from the Siwalik (Miocene) of the Western Himalaya". New Zealand Journal of Botany. doi:10.1080/0028825X.2024.2445285.
^Moore, Z.; Krings, M. (2025). "Morphological diversity of fungal reproductive units in the Lower Devonian Rhynie cherts of Scotland: a new type with a two-layered hyphal mantle". Neues Jahrbuch für Geologie und Paläontologie – Abhandlungen. doi:10.1127/njgpa/2025/1232.
^Barroso, F. R. G.; Viana, M. S. S.; Agostinho, S.; Daly, M.; Fairchild, T. R.; Marques, A. C.; Pacheco, M. L. A. F. (2025). "Insights into the lifestyle and preservation of Arenactinia ipuensis n. gen. et n. sp. (Anthozoa, Actiniaria) from the Early Silurian (Ipu Formation, Parnaíba Basin, Brazil)". Earth History and Biodiversity. 100017. doi:10.1016/j.hisbio.2025.100017.
^Krutykh, A. A.; Mirantsev, G. V.; Rozhnov, S. V. (2025). "Sutherlandia gzheliensis sp. nov.—a New Species of Favositid Coral from the Gzhelian Stage of the Moscow Syneclise". Paleontological Journal. 58 (11): 1208–1215. doi:10.1134/S0031030124601075.
^Baranov, V. V.; Kebrie-ee Zade, M. R.; Blodgett, R. B. (2025). "New Late Devonian (Upper Famennian) Athyridids from the Khoshyeilagh Formation of Eastern Alborz Mountains, North-East Iran". Paleontological Journal. 58 (11): 1232–1241. doi:10.1134/S0031030124601105.
^ abcdefghijklBohatý, J.; Ausich, W. I.; Ebert, L. M. (2025). "Revision of "Myrtillocrinus" (Crinoidea, Eucladida) and related Devonian genera as an example of the importance of reassessing historical fossil collections vs. mere study of flawed literature". Neues Jahrbuch für Geologie und Paläontologie – Abhandlungen. doi:10.1127/njgpa/2025/1234.
^Rozhnov, S. V. (2025). "Kukrusecrinus stellatus gen. et sp. nov.—the First Representative of the Family, Colpodecrinidae (Crinoidea, Camerata) in the Baltic Ordovician, Its Paleobiogeographic Significance and the Family Phylogenetic Position". Paleontological Journal. 58 (11): 1266–1280. doi:10.1134/S0031030124601129.
^Tolmacheva, T. Yu.; Dronov, A. V.; Lykov, N. A. (2025). "Multielement Conodonts from the Upper Ordovician of the Siberian Platform". Paleontological Journal. 58 (11): 1242–1265. doi:10.1134/S0031030124601117.
^Wang, W.; Hu, K.; Wang, X. (2025). "Temporal and spatial evolution of Mississippian conodont: A case study". Palaeogeography, Palaeoclimatology, Palaeoecology. 112701. doi:10.1016/j.palaeo.2024.112701.
^Morkovin, B. I. (2025). "Structural Features of the Muscular Crests of the Parasphenoid in Early Triassic Capitosauromorphs (Amphibia: Capitosauromorpha) of the East European Platform as a Reflection of Adaptive Differences". Paleontological Journal. 58 (11): 1291–1300. doi:10.1134/S0031030124601130.
^Jenkins, X. A.; Sues, H.-D.; Webb, S.; Schepis, Z.; Peecook, B. R.; Mann, A. (2025). "The recumbirostran Hapsidopareion lepton from the early Permian (Cisuralian: Artinskian) of Oklahoma reassessed using HRμCT, and the placement of Recumbirostra on the amniote stem". Papers in Palaeontology. 11 (1). e1610. doi:10.1002/spp2.1610.
^Medina, T. G. M.; Martinelli, A. G.; Gaetano, L. C.; Roese-Miron, L.; Tartaglione, A.; Backs, A.; Novas, F. E.; Kerber, L. (2025). "Revisiting the neuroanatomy of Massetognathus pascuali (Eucynodontia: Cynognathia) from the early Late Triassic of South America using Neutron Tomography". The Science of Nature. 112 (1). 7. doi:10.1007/s00114-024-01955-z. PMID39821074.
^Kerber, L.; Montoya-Sanhueza, G.; Roese-Miron, L.; Damke, L. V. S.; Rezende, L.; Soares, M. B.; Müller, R. T.; Pretto, F. A. (2025). "New insights into the postcranial anatomy of Exaeretodon riograndensis (Eucynodontia: Traversodontidae): phylogenetic implications, body mass, and lifestyle". Journal of Mammalian Evolution. 32 (1). 2. doi:10.1007/s10914-024-09741-4.
^Dotto, P. H.; Roese-Miron, L.; Cabreira, S. F.; Roberto-da-Silva, L.; Pretto, F. A.; Kerber, L. (2025). "Mandibular anatomy of a new specimen of a prozostrodontian cynodont (Eucynodontia: Probainognathia) from the Upper Triassic of Brazil". The Science of Nature. 112 (1). 6. doi:10.1007/s00114-024-01953-1. PMID39808199.
^ abcdBotting, J. P.; Janussen, D.; Dohrmann, M.; Muir, L. A.; Zhang, Y.; Ma, J. (2025). "Advanced crown-group Rossellidae (Porifera: Hexactinellida) resembling extant taxa from the Hirnantian (Late Ordovician) Anji Biota". Papers in Palaeontology. 11 (1). e70000. doi:10.1002/spp2.70000.
^Stock, C. W.; May, A.; Ebert, J. R.; Scotese, C. R.; Hagadorn, J. W. (2025). "Early Devonian (Pragian) decrease in global generic diversity of stromatoporoids, and their extreme decrease in paleogeographic distribution in North America". Palaeogeography, Palaeoclimatology, Palaeoecology. 112719. doi:10.1016/j.palaeo.2025.112719.
^Bicknell, R. D. C.; Campione, N. E.; Brock, G. A.; Paterson, J. R. (2025). "Adaptive responses in Cambrian predator and prey highlight the arms race during the rise of animals". Current Biology. doi:10.1016/j.cub.2024.12.007. PMID39755119.
^Kaminski, M. A.; Korin, A. (2025). "Flabellogaudryina n.gen, a new agglutinated foraminiferal genus from the Eocene of Saudi Arabia". Micropaleontology. 71 (1): 93–100. doi:10.47894/mpal.71.1.04.
^Vinn, O.; Almansour, M. I.; Al Farraj, S.; El Hedeny, M. (2025). "Symbiotic endobionts in tabulate corals from the Late Ordovician and Silurian of Estonia". GFF. doi:10.1080/11035897.2024.2391283.
^Liu, J.; Hardisty, D. S.; Kasting, J. F.; Fakhraee, M.; Planavsky, N. J. (2025). "Evolution of the iodine cycle and the late stabilization of the Earth's ozone layer". Proceedings of the National Academy of Sciences of the United States of America. 122 (2). e2412898121. doi:10.1073/pnas.2412898121. PMC 11745384. PMID39761407.
^Lotem, N.; Rasmussen, B.; Zi, J.-W.; Zeichner, S. S.; Present, T. M.; Bar-On, Y. M.; Fischer, W. W. (2025). "Reconciling Archean organic-rich mudrocks with low primary productivity before the Great Oxygenation Event". Proceedings of the National Academy of Sciences of the United States of America. 122 (2). e2417673121. doi:10.1073/pnas.2417673121. PMC 11745403. PMID39761395.
^Lu, C.; Lin, M.-Q.; Shen, J.; Ji, X.-K.; Yang, C.-M.; Zhang, Z.-H.; He, Q.; Sun, M.-D.; Xu, Y.-G. (2025). "A continental record of Early Cretaceous (Aptian) vegetation and climate change based on palynology and clay mineralogy from the North China Craton". Palaeogeography, Palaeoclimatology, Palaeoecology. 112750. doi:10.1016/j.palaeo.2025.112750.
^Riddell-Young, B.; Lee, J. E.; Brook, E. J.; Schmitt, J.; Fischer, H.; Bauska, T. K.; Menking, J. A.; Iseli, R.; Clark, J. R. (2025). "Abrupt changes in biomass burning during the last glacial period". Nature. 637 (8044): 91–96. doi:10.1038/s41586-024-08363-3. PMID39743610.