2025 in paleomammalogy

List of years in paleomammalogy
In paleontology
2022
2023
2024
2025
2026
2027
2028
In paleobotany
2022
2023
2024
2025
2026
2027
2028
In arthropod paleontology
2022
2023
2024
2025
2026
2027
2028
In paleoentomology
2022
2023
2024
2025
2026
2027
2028
In paleomalacology
2022
2023
2024
2025
2026
2027
2028
In paleoichthyology
2022
2023
2024
2025
2026
2027
2028
In reptile paleontology
2022
2023
2024
2025
2026
2027
2028
In archosaur paleontology
2022
2023
2024
2025
2026
2027
2028

This article records new taxa of fossil mammals of every kind that are scheduled to be described during the year 2025, as well as other significant discoveries and events related to paleontology of mammals that are scheduled to occur in the year 2025.

Afrotherians

Proboscideans

Proboscidean research

  • A study on mammoth teeth from the Pleistocene strata in Alberta (Canada), providing evidence of presence of three morphotypes – including a morphotype intermediate between the woolly mammoth and the Columbian mammoth – is published by Barrón-Ortiz, Jass & Cammidge (2025).[1]

Sirenians

Sirenian research

  • Ducrocq et al. (2025) report the discovery of fossil material (including a well-preserved and almost complete skull) of a specimen of Metaxytherium medium from the Miocene strata in France, and estimate body size of the studied specimen.[2]

Euarchontoglires

Primates

Primate research

  • Evidence from the study of brain endocasts of extant and extinct mammals, indicative of cortical expansion in the areas of the brain involved in producing cognitive functions that began early on during the primate evolution, is presented by Melchionna et al. (2025), who argue that selection for complex cognition likely drove the evolution of primate brains.[3]
  • Evidence from the study of the anatomy of manubria and sternebrae of extant and fossil simians, indicating that the anatomy of the sternum can provide information on the form of the thorax and the positional repertoire of the clavicles in fossil simians, is presented by Middleton, Alwell & Ward (2025).[4]
  • Brasil et al. (2025) revise the species-level taxonomy of South African Parapapio, and argue that the available evidence does not support assignment of the studied fossil material to more than one species.[5]
  • Pugh, Strain & Gilbert (2025) study the anatomy of teeth of Samburupithecus kiptalami and interpret it as a late-occurring African member of the family Oreopithecidae.[6]
  • A study on the morphology and affinities of Kapi ramnagarensis is published by Gilbert et al. (2025), who interpret the studied primate as a stem-hylobatid.[7]

General paleoanthropology

  • Lawrence, Hammond & Ward (2025) compare the orientation of the acetabulum in fossil hominins and extant primates, reporting evidence of humanlike condition in early Australopithecus.[8]
  • Evidence from the study of nitrogen and carbonate carbon isotope composition of tooth enamel of Australopithecus from the Sterkfontein Member 4 (South Africa), interpreted as indicating that the studied specimens had a plant-based diet and did not regularly eat mammalian meat, is presented by Lüdecke et al. (2025).[9]
  • Zanolli et al. (2025) study the anatomy and affinities of the Pleistocene hominin mandible SK 15 from Swartkrans Member 2, South Africa (the holotype of Telanthropus capensis), and interpret this specimen as belonging to a previously unrecognized species of Paranthropus, P. capensis.[10]
  • Mercader et al. (2025) present evidence indicating that Homo erectus occupying the Engaji Nanyori locality (Olduvai Gorge, Tanzania) one million years ago lived in extremely dry environment, and showed ability to adapt to such environment through the strategic use of water resources present in the studied area.[11]
  • Evidence from the study of starch grains found on basalt tools from the Gesher Benot Ya'aqov site (Israel), indicating that Middle Pleistocene hominins from the site processed diverse plants, is preserved by Ahituv et al. (2025).[12]
  • Schürch, Conard & Schmidt (2025) study the raw material sourcing of tools from the Gravettian and Magdalenian sites in Germany, and interpret their findings as indicating that territories of foraging groups that occupied the studied sites spanned across 300 km.[13]

Laurasiatherians

Artiodactyls

Cetaceans

Name Novelty Status Authors Age Type locality Country Notes Images

Cochimicetus[14]

Gen. et sp. nov

Valid

Cedillo-Avila, González-Barba & Solis-Añorve

Oligocene

San Gregorio Formation

 Mexico

A member of the family Eomysticetidae. The type species is C. convexus.

Other artiodactyls

Name Novelty Status Authors Age Type locality Country Notes Images

Aegyptomeryx[15]

Gen. et sp. nov

In press

Pickford & Gawad

Miocene

 Egypt

An anthracothere. Genus includes new species A. grandis.

Masrimeryx[15]

Gen. et comb. nov

In press

Pickford & Gawad

Miocene

 Egypt

An anthracothere. Genus includes "Afromeryx" palustris Miller et al. (2014).

Mogharameryx[15]

Gen. et comb. nov

In press

Pickford & Gawad

Miocene

 Egypt

An anthracothere. Genus includes "Brachyodus" mogharensis Pickford (1991).

Other artiodactyl research
  • Bouaziz et al. (2025) study the morphology of the anterior teeth of Indohyus indirae, and interpret the studied teeth as forming a grasping device used to capture preys, similar to teeth of stem cetaceans.[16]

Carnivorans

Name Novelty Status Authors Age Type locality Country Notes Images

Panthera uncia lusitana[17]

Ssp. nov

Jiangzuo et al.

Pleistocene

 Portugal

A subspecies of the snow leopard.

Carnivoran research

Chiropterans

Name Novelty Status Authors Age Type locality Country Notes Images

Rhinophylla garbogginii[19]

Sp. nov

Salles et al.

Quaternary

 Brazil

A species of Rhinophylla.

Perissodactyls

Perissodactyl research

  • Pandolfi et al. (2025) describe new fossil material of Tapirus priscus from the Vallesian strata of the Vallès-Penedès Basin (Spain), providing new information on the anatomy of members of the species and extending its known chronostratigraphic range in Western Europe.[20]

Other laurasiatherians

Miscellaneous laurasiatherian research

  • Mulcahy, Constenius & Beard (2025) report the first discovery of fossil material of a uintathere from the Kishenehn Formation (Montana, United States), representing the northernmost record of the group in North America reported to date.[21]

Xenarthrans

Cingulatans

Cingulatan research

  • A study on the morphology of the osteoderms of Quaternary pampatheriids and a revision of their taxonomy is published by Ferreira et al. (2025)[22]
  • Magoulick et al. (2025) determine that environmental conditions in Central America during the Plio-Pleistocene enabled dispersal of Glyptotherium from South America to North America, and possibly also its migration back to South America during the Rancholabrean.[23]

Pilosans

Pilosan research

  • Evidence interpreted as indicating that megathere ground sloths had lower body temperatures than reported in other large terrestrial mammals, as well as indicative of varied fur coverage depending on the environment, is presented by Deak et al. (2025).[24]

Metatherians

Metatherian research

  • A study on tooth wear in extant and fossil kangaroos is published by Arman, Gully & Prideaux (2025), who interpret their findings as indicating that Pleistocene kangaroos had more generalist diets than indicated by the anatomy of their skull and teeth, and likely indicating that extinctions of Pleistocene kangaroos were not driven by climate and environmental changes.[25]

General mammalian research

  • Evidence from the study of morphology, puncture performance and breakage resistance of saber teeth, interpreted as indicating that repeated evolution of saber teeth in mammalian carnivores is a result of selection for functionally optimal morphology, is presented by Pollock et al. (2025).[26]
  • Ugarte, Nascimento & Pires (2025) study the distribution and completeness of the fossil record of Cenozoic mammals from South America, as well as its implications for the knowledge of the evolution of South American mammals.[27]
  • Gelabert et al. (2025) study sedimentary ancient DNA from the El Mirón Cave (Spain), reporting evidence of presence of 28 taxa (humans, 21 herbivores and 6 carnivores), evidence of longer survival of leopards and hyenas in the Iberian Peninsula than indicated by fossil record, and evidence of the presence of a stable human population in the region of the cave during and after the Last Glacial Maximum.[28]
  • Faria et al. (2025) determine the age of teeth of extinct members of mammalian megafauna from Itapipoca and the Rio Miranda valley in the Brazilian Intertropical Region, and report evidence of survival of the studied mammals until the middle and late Holocene, including survival of Palaeolama major and Xenorhinotherium bahiense until approximately 3500 years Before Present.[29]

References

  1. ^ Barrón-Ortiz, C. I.; Jass, C. N.; Cammidge, T. S. (2025). "Taxonomic, biogeographic, and biological implications of mammoth teeth from a dynamic Pleistocene landscape in Alberta, Canada". Quaternary Research. 123: 41–58. doi:10.1017/qua.2024.47.
  2. ^ Ducrocq, S.; Lefébure, B.; Garcia, G.; Chevrier, F.; Sinturet, J.-M.; Valentin, X. (2025). "A partial skeleton of Metaxytherium medium from the middle Miocene of La Morfassière quarry (Indre-et-Loire, France)". Palæovertebrata. 48 (1). e1. doi:10.18563/pv.48.1.e1.
  3. ^ Melchionna, M.; Castiglione, S.; Girardi, G.; Profico, A.; Mondanaro, A.; Sansalone, G.; Chatar, N.; Pérez Ramos, A.; Fernández-Monescillo, M.; Serio, C.; Pandolfi, L.; Dembitzer, J.; Di Febbraro, M.; Caliendo, M. M.; Di Costanzo, A.; Morvillo, L.; Esposito, A.; Raia, P. (2025). "Cortical areas associated to higher cognition drove primate brain evolution". Communications Biology. 8. 80. doi:10.1038/s42003-025-07505-1.
  4. ^ Middleton, E. R.; Alwell, M. T.; Ward, C. V. (2025). "Manubriosternal Morphology of Anthropoid Primates". American Journal of Biological Anthropology. 186 (1). e25053. doi:10.1002/ajpa.25053. PMID 39780526.
  5. ^ Brasil, M. F.; Monson, T. A.; Stratford, D. J.; Hlusko, L. J. (2025). "A hypothesis-based approach to species identification in the fossil record: a papionin case study". Frontiers in Ecology and Evolution. 12. 1481903. doi:10.3389/fevo.2024.1481903.
  6. ^ Pugh, K. D.; Strain, J. A.; Gilbert, C. C. (2025). "Reanalysis of Samburupithecus reveals similarities to nyanzapithecines". Journal of Human Evolution. 200. 103635. doi:10.1016/j.jhevol.2024.103635. PMID 39809111.
  7. ^ Gilbert, C. C.; Ortiz, A.; Pugh, K. D.; Campisano, C. J.; Patel, B. A.; Singh, N. P.; Fleagle, J. G.; Patnaik, R. (2025). "Additional analyses of stem catarrhine and hominoid dental morphology support Kapi ramnagarensis as a stem hylobatid". Journal of Human Evolution. 199. 103628. doi:10.1016/j.jhevol.2024.103628. PMID 39764860.
  8. ^ Lawrence, A. B.; Hammond, A. S.; Ward, C. V. (2025). "Acetabular orientation, pelvic shape, and the evolution of hominin bipedality". Journal of Human Evolution. 200. 103633. doi:10.1016/j.jhevol.2024.103633. PMID 39765141.
  9. ^ Lüdecke, T.; Leichliter, J. N.; Stratford, D.; Sigman, D. M.; Vonhof, H.; Haug, G. H.; Bamford, M. K.; Martínez-García, A. (2025). "Australopithecus at Sterkfontein did not consume substantial mammalian meat". Science. 387 (6731): 309–314. doi:10.1126/science.adq7315. PMID 39818884.
  10. ^ Zanolli, C.; Hublin, J.-J.; Kullmer, O.; Schrenk, F.; Kgasi, L.; Tawane, M.; Xing, S. (2025). "Taxonomic revision of the SK 15 mandible based on bone and tooth structural organization". Journal of Human Evolution. 200. 103634. doi:10.1016/j.jhevol.2024.103634. PMID 39752989.
  11. ^ Mercader, J.; Akuku, P.; Boivin, N.; Camacho, A.; Carter, T.; Clarke, S.; Cueva Temprana, A.; Favreau, J.; Galloway, J.; Hernando, R.; Huang, H.; Hubbard, S.; Kaplan, J. O.; Larter, S.; Magohe, S.; Mohamed, A.; Mwambwiga, A.; Oladele, A.; Petraglia, M.; Roberts, P.; Saladié, P.; Shikoni, A.; Silva, R.; Soto, M.; Stricklin, D.; Mekonnen, D. Z.; Zhao, W.; Durkin, P. (2025). "Homo erectus adapted to steppe-desert climate extremes one million years ago". Communications Earth & Environment. 6. 1. doi:10.1038/s43247-024-01919-1.
  12. ^ Ahituv, H.; Henry, A. G.; Melamed, Y.; Goren-Inbar, N.; Bakels, C.; Shumilovskikh, L.; Cabanes, D.; Stone, J. R.; Rowe, W. F.; Alperson-Afil, N. (2025). "Starch-rich plant foods 780,000 y ago: Evidence from Acheulian percussive stone tools". Proceedings of the National Academy of Sciences of the United States of America. 122 (3). e2418661121. doi:10.1073/pnas.2418661121. PMID 39761385.
  13. ^ Schürch, B.; Conard, N. J.; Schmidt, P. (2025). "Examining Gravettian and Magdalenian mobility and technological organization with IR spectroscopy". Scientific Reports. 15 (1). 1897. doi:10.1038/s41598-024-84302-6. PMC 11730608. PMID 39805857.
  14. ^ Cedillo-Avila, C.; González-Barba, G.; Solis-Añorve, A. (2025). "First record of an Eomysticetidae from the Late Oligocene at the Pilon locality, San Gregorio Formation, Baja California Sur, Mexico". Palaeontologia Electronica. 28 (1). 28.1.a1. doi:10.26879/1390.
  15. ^ a b c Pickford, M.; Gawad, M. A. (2025). "Revision of Large Anthracotheres from the Early Miocene of Moghara, Egypt". Münchner Geowissenschaftliche Abhandlungen Reihe A: Geologie und Paläontologie. 54: 1–96. ISBN 978-3-89937-300-4.
  16. ^ Bouaziz, H.; Orliac, M. J.; Waqas, M.; Rana, R. S.; Smith, T.; Weppe, R. (2025). "Morphological study of the anterior dentition in Raoellidae (Mammalia, Artiodactyla), new insight on their dietary habits". Journal of Anatomy. doi:10.1111/joa.14209. PMID 39814411.
  17. ^ Jiangzuo, Q.; Madurell-Malapeira, J.; Li, X.; Estraviz-López, D.; Mateus, O.; Testu, A.; Li, S.; Wang, S.; Deng, T. (2025). "Insights on the evolution and adaptation toward high-altitude and cold environments in the snow leopard lineage". Science Advances. 11 (3): eadp5243. doi:10.1126/sciadv.adp5243. PMC 11734717. PMID 39813339.
  18. ^ Marciszak, A.; Bower, A. (2025). "New records of Lutra simplicidens Thenius, 1965 from Europe". Journal of Quaternary Science. doi:10.1002/jqs.3689.
  19. ^ Salles, L. O.; Moraes Neto, C. R.; Almeida, L. H. S.; Ramos, R. R. C.; Laureano, F. V.; Anjos, L. J. S.; Oliveira, L. F. B.; Oliveira, M. B.; Arroyo-Cabrales, J.; Guedes, P. G.; Nascimento, P. I. P.; Calvo, E. M.; Costa, K. R.; Santos, C. M. S. F. F.; Lopes, R. T.; Toledo, P. M. (2025). "Assessments of the earliest bats from the Quaternary of Serra da Mesa (Goiás, Brazil): phylogenetic insights and biogeographic modelling on the new extinct species of Rhinophylla, the first fossil record of the subfamily Rhinophyllinae (Chiroptera, Mammalia)". Historical Biology: An International Journal of Paleobiology. doi:10.1080/08912963.2024.2447593.
  20. ^ Pandolfi, L.; Arranz, S. G.; Almécija, S.; Galindo, J.; Luján, À. H.; Pina, M.; Urciuoli, A.; Casanovas-Vilar, I.; Alba, D. M. (2025). "Late Miocene Tapiridae from Vallès-Penedès Basin (NE Iberian Peninsula): taxonomic and paleoenvironmental implications". Swiss Journal of Palaeontology. 144. 3. doi:10.1186/s13358-024-00342-5.
  21. ^ Mulcahy, K. D.; Constenius, K. N.; Beard, K. C. (2025). "Nothernmost Record of Dinocerata (Mammalia: Eutheria) in North America from the Middle Eocene Kishenehn Formation of Montana". Annals of Carnegie Museum. 90 (3): 225–231. doi:10.2992/007.090.0305.
  22. ^ Ferreira, T. M. P.; Casali, D. M.; Neves, S. B.; Ribeiro, A. M. (2025). "Osteoderm morphology and taxonomy of Pampatheriidae (Cingulata, Xenarthra) from the Quaternary of the Neotropical region". Historical Biology: An International Journal of Paleobiology. doi:10.1080/08912963.2024.2439939.
  23. ^ Magoulick, K. M.; Saupe, E. E.; Farnsworth, A.; Valdes, P. J.; Marshall, C. R. (2025). "Evaluating migration hypotheses for the extinct Glyptotherium using ecological niche modeling". Ecography. doi:10.1111/ecog.07499.
  24. ^ Deak, M. D.; Porter, W. P.; Mathewson, P. D.; Lovelace, D. M.; Flores, R. J.; Tripati, A. K.; Eagle, R. A.; Schwartz, D. M.; Butcher, M. T. (2025). "Metabolic skinflint or spendthrift? Insights into ground sloth integument and thermophysiology revealed by biophysical modeling and clumped isotope paleothermometry". Journal of Mammalian Evolution. 32 (1). 1. doi:10.1007/s10914-024-09743-2. PMC 11732909.
  25. ^ Arman, S. D.; Gully, G. A.; Prideaux, G. J. (2025). "Dietary breadth in kangaroos facilitated resilience to Quaternary climatic variations". Science. 387 (6730): 167–171. doi:10.1126/science.adq4340. PMID 39787219.
  26. ^ Pollock, T. I.; Deakin, W. J.; Chatar, N.; Milla Carmona, P. S.; Rovinsky, D. S.; Panagiotopoulou, O.; Parker, W. M. G.; Adams, J. W.; Hocking, D. P.; Donoghue, P. C. J.; Rayfield, E. J.; Evans, A. R. (2025). "Functional optimality underpins the repeated evolution of the extreme "saber-tooth" morphology". Current Biology. doi:10.1016/j.cub.2024.11.059. PMID 39793568.
  27. ^ Ugarte, P. D. S.; Nascimento, J. C. S.; Pires, M. M. (2025). "Spatiotemporal variability in the South American mammalian fossil record and its impact on macroevolutionary inference". Frontiers in Mammal Science. 3. 1518039. doi:10.3389/fmamm.2024.1518039.
  28. ^ Gelabert, P.; Oberreiter, V.; Straus, L. G.; González Morales, M. R.; Sawyer, S.; Marín-Arroyo, A. B.; Geiling, J. M.; Exler, F.; Brueck, F.; Franz, S.; Tenorio Cano, F.; Szedlacsek, S.; Zelger, E.; Hämmerle, M.; Zagorc, B.; Llanos-Lizcano, A.; Cheronet, O.; Tejero, J.-M.; Rattei, T.; Kraemer, S. M.; Pinhasi, R. (2025). "A sedimentary ancient DNA perspective on human and carnivore persistence through the Late Pleistocene in El Mirón Cave, Spain". Nature Communications. 16 (1). 107. doi:10.1038/s41467-024-55740-7. PMC 11696082. PMID 39747910.
  29. ^ Faria, F. H. C.; Carvalho, I. S.; Araújo-Júnior, H. I.; Ximenes, C. L.; Facincani, E. M. (2025). "3,500 years BP: The last survival of the mammal megafauna in the Americas". Journal of South American Earth Sciences. 105367. doi:10.1016/j.jsames.2025.105367.