An orb-weaver spider. The spelling ?Baltaraneus rotundus is used in the paper naming it, but the discussion of its relationships tentatively refers it to the genus Bararaneus.[2]
Córdova-Tabares et al. (2024) describe a sac spider specimen from the Mexican amber preserved with an ant belonging to the genus Azteca, providing evidence of a fossil spider showing trapping and feeding behavior seen also in its extant relatives.[9]
Gainett et al. (2024) report that extant daddy longlegs have six eyes, including four vestigial ones, and reevaluate the affinities of fossil members of Opiliones with four eyes, resulting in older estimated ages of harvestman diversification.[12]
A member of Oribatida belonging to the family Collohmanniidae.
Schizomida
Schizomid research
A study on changes of body size and shape diversity of male flagella in Schizomida throughout their evolutionary history is published by Belojević et al. (2024).[18]
A member of the family Chaerilobuthidae or Pseudochactidae.[22] The type species is S. schmidti. Xuan et al. (2025) considered the genus Serratochaerilobuthus to be a junior synonym of the genus Chaerilobuthus, though the authors maintained S. schmidti as a distinct species within the latter genus.[22]
Scorpion research
Review of the higher classification of fossil scorpions is published by Dunlop & Garwood (2024) .[26]
Lourenço & Velten (2024) report the discovery of pro-juvenile specimens of Betaburmesebuthus kobberti trapped together in a piece of Burmese amber, and interpret this finding as possible evidence that Cretaceous palaeoburmesebuthid scorpions produced litters with reduced number of offspring but including large pro-juveniles.[27]
A mite belonging to the family Trochometridiidae. The type species is R. pankowskiorum.
Trombidiform research
Larvae of mites belonging to the group Erythraeoidea parasitising gall midges (providing evidence of an association unknown in extant fauna) are reported from the Cretaceous amber from Myanmar by Arce et al. (2024), who interpret this finding as indicative of shift of the host range of the studied mites after the Cretaceous.[31]
A member of Pantetrapulmonata of uncertain affinities. The type species is D. acanthopoda.
Other arachnid research
A study on the mouthparts of members of the genus Palaeocharinus from the Rhynie chert (United Kingdom), providing evidence of the presence of a sophisticated mechanism for liquid feeding comparable to the filtration mechanisms of extant arachnids, is published by Long et al. (2024).[33]
A study on the structure of cuticles of Palaeocharinus, providing evidence of possible adaptations to terrestrial life, is published by Long et al. (2024).[34]
A member of the family Stylonuridae. The type species is Q. spineus.
Eurypterid research
A study on the evolution of eurypterid body size is published by Ruebenstahl et al. (2024), who find that giant size evolved independently in different eurypterid lineages, without clear relation to habitat or environmental drivers.[36]
Bicknell et al. (2024) describe new fossil material of Silurian and Devonian eurypterids from the Wallace Shale and Merrimerriwa Formation (Australia), extending known geographical range of Jaekelopterus into Gondwana.[37]
A diverse assemblage of eurypterid remains, including isolated setae and cuticular sheets with attached setae, is described from the Devonian Ora Formation (Iraq) by Makled et al. (2024).[38]
Bicknell, Gaines & Hopkins (2024) describe a carcinosomatid specimen from the Ordovician strata from the Beecher's Trilobite Bed (New York, United States) preserving the first evidence for mesosomal musculature in eurypterids, and providing evidence that eurypterid musculature can be preserved in pyrite.[40]
Poschmann & Tollerton (2024) describe a new specimen of Eysyslopterus patteni from the Silurian Rootsiküla/Saaremaa Lagerstätte (Estonia), providing information on the morphology of the metastoma of the studied eurypterid.[41]
A member of Euchelicerata recovered as an offacolid synziphosurine. The type species is S. abundantis.
Other chelicerate research
Lustri et al. (2024) describe new fossil material of Bunaia woodwardi from the Silurian (Přídolí) Williamsville Formation of the Bertie Group (Ontario, Canada), and interpret B. woodwardi as a member of the family Offacolidae.[46]
Revision of the taxonomy, morphology and stratigraphical distribution of members of the genus Limuloides is published by Howard (2024).[47]
Sabroux et al. (2024) revise the fossil material of Devonian sea spiders from the Hunsrück Slate (Germany), providing new information on their anatomy and affinities, and find no compelling evidence of Pantopoda in the Devonian.[48]
A crab belonging to the family Geryonidae. The type species is "Xanthilites" macrodactylus Van Straelen (1924); genus also includes "Coeloma" martinezensis Rathbun (1926) and "Xanthilites macrodactylus" pyrenaicus Artal & Vía (1989), raised to the rank of the species Pyrenicola pyrenaica.
A crab belonging to the superfamily Majoidea and the family Epialtidae. The type species is "Maia" arambourgi Van Straelen (1937).
Malacostracan research
A study on the hydrodynamic performance of carapaces of caryocaridid archaeostracans, providing evidence that the carapace shapes facilitated the pelagic mode of life of caryocaridids, is published by Pates & Xue (2024).[78]
A study on carapaces of specimens of the caryocaridid species Soomicaris cedarbergensis from the Ordovician Xinertai Formation (China), providing probable evidence of adaptations to the pelagic lifestyle, is published by Liu et al. (2024).[79]
Bicknell et al. (2024) describe fossil material of mantis shrimps belonging to the group Archaeostomatopodea and possibly to the genus Tyrannophontes fom the Carboniferous Wea Shale Member of the Cherryvale Shale (Nebraska, United States), preserving the oldest evidence of the presence of biramous gilled appendages in mantis shrimps reported to date.[80]
Redescription of Kellnerius jamacaruensis is published by Barros, Oliveira & Saraiva (2024), who reaffirm the inclusion of this shrimp within the family Palaemonidae.[81]
Purported crushing teeth of teleosts or Lepidotes from the Upper Cretaceous Allen, Los Alamitos, La Colonia, Loncoche and Chorrillo formations (Argentina) are reinterpreted as bio-gastroliths (temporary structures within the lateral walls of the stomach, serving as reservoirs of calcium carbonate before molting) of members of Astacidea by Panzeri et al. (2024).[83]
Luque et al. (2024) provide fossil node calibration points for the studies of the phylogenetic relationships of crabs, and reassess the earliest occurrences of members of several crab groups.[84]
Redescription of "Dromiopsis" oscari is published by LaBonte, Schweitzer & Feldmann (2024) who transfer this crab from the family Dynomenidae to the family Goniodromitidae and to the genus Sabellidromites.[85]
A study on the diversity and distribution of crabs belonging to the group Homoloida throughout their evolutionary history is published by Shaffer & Schweitzer (2024).[86]
A member of Podocopida belonging to the family Progonocytheridae. The type species is "Palaeocytheridea" milanovskyi Lyubimova (1955); genus also includes new species B. prima, B. paenultima and B. ultima.
A member of the family Bythocytheridae; a replacement name for Scaphium Jordan (1964). Published online in 2024, but the issue date is listed as December 2023.
A study on pores and associated canals in extant and Triassic ornate bairdiids, providing new morphological data interpret as supporting the interpretation of the Triassic genera Mirabairdia and Nodobairdia as distinct from the extant genus Triebelina, is published by Forel et al. (2024).[101]
Taxonomic revision of ostracods from the Lower Cretaceous Codó Formation (Brazil) is published by Coimbra & Petró (2024).[102]
A study on changes of the diversity of ostracods from the Indo-Australian Archipelago region throughout the Cenozoic, aiming to determine factors responsible for recorded changes, is published by Tian et al. (2024), who argue that the studied region became the richest marine biodiversity hotspot mostly as a result of immunity to major extinction events during the Cenozoic, shift towards colder climate and the increase in habitat size (shelf area).[103]
A member of the family Eosestheriidae; a replacement name for Pingquania Wang in Wang & Li (2008). Published online in 2024, but the issue date is listed as December 2023.
Alarcón et al. (2024) report the discovery of new clam shrimp assemblages from the Upper Triassic (Norian) Bocas and Montebel formations (Colombia), providing evidence of a similar composition of Norian clamp shrimp assemblages from northwestern Gondwana and rift basins of central Pangea (but different from those from southern Gondwana).[111]
A member of the family Acastidae. The type species is "Pelitlina" corbachoi Basse & Müller (2016); genus also includes "Pelitlina" smeenki Lieberman & Kloc (1997) and "Acastava" faberi Basse & Franke (2006).
A member of the family Odontopleuridae. The type species is "Acidaspis" roemeri Barrande (1852); genus also includes "Odontopleura" dormitzeri Hawle & Corda (1847) and "Odontopleura" dumortieri Hawle & Corda (1847).
A member of Harpetida belonging to the family Harpetidae. The types species is M. hammii; genus also includes new species M. azmamarensis, M. forteyi, M. ihmadii, M. laatchanensis, M. minutipunctus, M. oufatenensis, M. terridus and M. zguidensis, as well as "Harpes" rouvillei Frech (1887) and "Harpes" sculptus Hawle & Corda (1847).
A member of Harpetida belonging to the family Harpetidae. The types species is P. segaouii; genus also includes new species P. apteros, P. chaperon, P. hannabouensis, P. haustrum, P. igaouii, P. merzaneensis and P. torquis, as well as "Harpes" hamarlaghdadensis Crônier et al. (2018) and probably also "Harpes" fornicatus Novák (1890) and "Harpes" pygmaeus Lütke (1965).
A member of Harpetida belonging to the family Harpetidae. The types species is S. rissaniensis; genus also includes new species S. calceolus, S. capricornus and S. retiarius, as well as "Kielania" obuti Pribyl & Vanek (1986) and "Harpes" convexus Hawle & Corda (1847).
A member of the family Dalmanitidae. The type species is W. eatonae.
Trilobite research
Drage (2024) finds evidence of only minor differences in morphometry between trilobites displaying different modes of moulting.[129]
Trilobite fossil material from the Tiout section in Morocco, representing the first occurrence of trilobites in West Gondwana and some of the oldest trilobite fossils in general, is determined to be approximately 519.62-million-years-old by Sinnesael, Millard & Smith (2024).[130]
El Albani et al. (2024) report the discovery of exceptionally preserved trilobite specimens from the Cambrian Tatelt Formation (Morocco) fossilized through rapid ash burial caused by underwater pyroclastic flow, providing new information on the trilobite anatomy.[131]
A study on the growth and development of Sahtuia carcajouensis and Mackenzieaspis parallelispinosa from the Cambrian Mount Cap Formation (Canada) is published by Handkamer & Pratt (2024), who report evidence of decrease in the number of episodes of segment release in both taxa, possibly as a result of local environmental conditions.[132]
Singla et al. (2024) demarcate the stratigraphic thickness of the Oryctocephalus salteri biozone in the Cambrian (Wuliuan) Parahio Member of the Kunzam La Formation in the Spiti region, preserving diverse trilobite fossils, and correlate the O. salteri biozone of the Kunzam La Formation with the Tonkinella-Hundwarella bearing level of the Nutunus Formation in the Kashmir region.[133]
Evidence interpreted as indicative of a direct link between the spread of low-oxygen conditions in shallow-water settings and the turnover of trilobites from the North China Platform during the Steptoean positive carbon isotope excursion is presented by Yang et al. (2024).[134]
A study on the affinities of harpetid and trinucleioid trilobites is published by Beech, Bottjer & Smith (2024), who argue that the body plan with a wide, flattened cephalic brim or fringe evolved independently in the two groups, and interpret trinucleids as likely specialized asaphids.[135]
Evidence from the study of soft-bodied specimens of Olenoides serratus and Triarthrus eatoni, interpreted as indicating that trilobites had five pairs of cephalic appendages, is presented by Hou & Hopkins (2024).[136]
Specimens of Dalmanitina socialis preserved with remains of the alimentary tract are described from the Ordovician Letná Formation (Czech Republic) by Fatka, Budil & Mikuláš (2024).[139]
Bicknell et al. (2024) describe a specimen of Toxochasmops vormsiensis from the Katian Kõrgessaare Formation (Estonia) preserved molted within the body chamber of a nautiloid cephalopod Gorbyoceras textumaraneum, representing the first known record of cryptic molting of pterygometopid trilobites.[140]
Evidence indicating that two peaks of in trilobite cephalic shape diversity in the Ordovician and the Devonian were caused by different underlying mechanisms is presented by Drage & Pates (2024).[141]
A study on the biogeography of Cheirurina during the Ordovician is published by Pérez-Peris, Adrain & Daley (2024).[142]
Bicknell, Smith & Miller-Camp (2024) and Bicknell, Smith & Hopkins (2024) revise the record of trilobite specimens with malformations from the collections of the Indiana University[143] and the American Museum of Natural History.[144]
A study on the phylogenetic relationships of cheirurine, deiphonine and "cyrtometopine" cheirurids is published by Pérez-Peris, Adrain & Daley (2024).[145]
A member of Agnostida belonging to the family Weymouthiidae. The type species is "Microdiscus" helena Walcott (1889); genus also includes "Calodiscus" granulosus Egorova & Shabanov (1972).
A study on the morphological diversity of carapaces of bradoriids is published by Cox & Pates (2024).[157]
O'Flynn et al. (2024) describe new fossil material of Bushizheia yangi from the Cambrian Chengjiang Lagerstätte (China), providing new information on its head morphology, and interpret the studied specimens as supporting the interpretation of a six-segmented head as an ancestral state for Deuteropoda.[158]
Redescription and a study on the affinities of Urokodia aequalis is published by Liu et al. (2024), who interpret this arthropod as a basal member of Artiopoda, and interpret its body plan as likely similar to the ancestral body plan for Artiopoda.[159]
Lin et al. (2024) describe new fossil material of Retifacies abnormalis from the Cambrian Helinpu Formation (Yunnan, China) including large specimens with a carapace ornamentation different from what was previously known, and interpret the reported differences as developing during ontogeny, but don't consider them to indicate sexual dimorphs.[160]
Li et al. (2024) report evidence of repeated decline of morphological diversity of eodiscids and agnostoids associated with Cambrian extinction events and with the Great Ordovician Biodiversification Event.[161]
Braddy (2024) reviews diversity, ichnology, ecology and evolution of euthycarcinoids, and names a new family Apankuridae.[163]
A study on the anatomy of heads of juvenile specimens of Arthropleura from the Carboniferous Montceau-les-Mines Lagerstätte (France) is published by Lhéritier et al. (2024), who report evidence of the presence of millipede-like trunk tagmosis and centipede-like head characters in Arthropleura, and argue that Arthropleura might be a member of Pectinopoda more closely related to millipedes than to centipedes.[164]
Le Cadre et al. (2024) describe new centipede specimens from the Cretaceous amber from Myanmar, including a henicopid representing the oldest unambiguous member of [[]] in the fossil record reported to date.[165]
Review of the fossil record of millipedes is published by Álvarez-Rodríguez et al. (2024).[166]
General research
Turner, McLoughlin & Mays (2024) review the known record of plant–arthropod interactions on Early and Middle Triassic fossil leaves from Gondwana, reevaluate known record of the studied interactions in the Australian Middle Triassic Benolong Flora, and argue that concerted investigations can greatly increase the number of plant–arthropod interactions in the studied fossil assemblages.[167]
Loewen et al. (2024) describe a diverse amber deposit from the Maastrichtian strata from the Big Muddy Badlands (Canada), preserving fossils of representatives of seven arthropod orders and at least 11 insect families, and interpret the studied assemblage as providing evidence of a faunal turnover among insects prior to the Cretaceous–Paleogene extinction event.[168]
References
^Wang, X.; Yu, K.; Selden, P. A.; Ren, D.; Guo, X. (2024). "New mid-Cretaceous macrothelids showing a similar living mode to extant Macrothelidae (Araneae: Mygalomorphae)". Journal of Systematics and Evolution. doi:10.1111/jse.13139.
^ abGuo, X.; Selden, P. A.; Ren, D.; Niu, Y.; Zhang, F. (2024). "New Lineaburmops fossils (Araneae: Lagonomegopidae) with contrasting color patterns from mid-Cretaceous Kachin amber, northern Myanmar". Cretaceous Research. 158. 105835. Bibcode:2024CrRes.15805835G. doi:10.1016/j.cretres.2024.105835. S2CID267009986.
^ abHou, Y.M.; Guo, X.B.; Selden, P. A.; Wang, L.Y.; Ren, D. (2024). "Two new long-pedipalp spiders (Araneae: Pholcochyroceridae) from mid-Cretaceous Kachin amber of northern Myanmar". Palaeoentomology. 7 (2): 224–236. doi:10.11646/palaeoentomology.7.2.6.
^Poinar, G (2024). "Myrmarachne colombiana sp. n. (Araneae: Salticidae), a new species of ant-mimic spider in copal from Colombia, South America". Historical Biology: An International Journal of Paleobiology: 1–6. doi:10.1080/08912963.2024.2320190.
^Perger, R. (2024). "Myrmecium colombianum (Poinar, 2024) n. comb.—the second known fossilized castianeirine spider, illustration of a further specimen of Myrmecium in Colombian copal and notes on transformational ant mimicry and evolution of the genus". Zootaxa. 5474 (4): 445–450. doi:10.11646/zootaxa.5474.4.7. PMID39646479.
^García-Villafuerte, M. Á.; Carbot-Chanona, G.; Gómez-Pérez, L. E. (2024). "The oldest record of the true short-legged daddy-long-leg spider Pholcophora (Araneae: Pholcidae: ninetinae) from Mexican amber". Historical Biology: An International Journal of Paleobiology: 1–6. doi:10.1080/08912963.2024.2440562.
^Córdova-Tabares, V. M.; Riquelme, F.; Varela-Hernández, F.; Estrada-Ruiz, E. (2024). "Spider-ant predation in Oligo-Miocene Mexican amber". Palaeoentomology. 7 (3): 435–442. doi:10.11646/palaeoentomology.7.3.13.
^Córdova-Tabares, V.; Riquelme, F.; Villegas-Guzmán, G.; Víctor, J.; Estrada-Ruiz, E. (2024). "A phoretic pseudoscorpion (Pseudoscorpiones: Cheliferidae: Hysterochelifer) from the Mexican amber". Historical Biology: An International Journal of Paleobiology: 1–9. doi:10.1080/08912963.2024.2336980.
^ abcdefgKolesnikov, V. B.; Vorontsov, D. D.; Sidorchuk, E. A. (2024). "Seven new species from Eocene Baltic amber reveal surprising diversity and suggest possible speciation scenarios in the relictual family Collohmanniidae (Acari: Oribatida)". Zootaxa. 5553 (1): 1–78. doi:10.11646/zootaxa.5553.1.1.
^Lourenço, W. R.; Velten, J. (2024). "An unusual new species of Betaburmesebuthus Lourenço, 2015 trapped in Burmite (Scorpiones: Palaeoburmesebuthidae)". Faunitaxys. 12 (26): 1–5. doi:10.57800/faunitaxys-12(26).
^Lourenço, W. R. (2024). "A new scorpion species for the genus Burmesescorpiops Lourenço, 2016 from Cretaceous Burmese amber (Scorpiones: Palaeoeuscorpiidae: Archaeoscorpiopinae)". Faunitaxys. 12 (4): 1–5. doi:10.57800/faunitaxys-12(4).
^Lourenço, W. R.; Velten, J. (2024). "The remarkable diversity of the genus Chaerilobuthus Lourenço & Beigel, 2011 with the description of one more new species (Scorpiones: Chaerilobuthidae)". Faunitaxys. 12 (56): 1–5. doi:10.57800/faunitaxys-12(56).
^ abcdXuan, Q.; Prendini, L.; Engel, M. S.; Cai, C.; Huang, D. (2025). "Extinct scorpion family Chaerilobuthidae from Mid-Cretaceous Burmese amber reinterpreted as subfamily of extant family Pseudochactidae (Chelicerata: Scorpiones)". Zoological Journal of the Linnean Society. 203 (1). zlae169. doi:10.1093/zoolinnean/zlae169.
^Lourenço, W. R.; Velten, J. (2024). "One more particular new species belonging to the genus Chaerilobuthus Lourenço & Beigel, 2011 (Scorpiones: Chaerilobuthidae)". Faunitaxys. 12 (24): 1–5. doi:10.57800/faunitaxys-12(24).
^Lourenço, W. R.; Velten, J. (2024). "An exceptional new genus of fossil scorpion from Burmese Cretaceous amber belonging to the family Palaeoburmesebuthidae Lourenço, 2015". Faunitaxys. 12 (13): 1–7. doi:10.57800/faunitaxys-12(13).
^Lourenço, W. R.; Velten, J. (2024). "New insights on the diversity of the family Chaerilobuthidae Lourenço & Beigel, 2011 with the description of one new genus and species (Scorpiones)". Faunitaxys. 12 (46): 1–6. doi:10.57800/faunitaxys-12(46).
^Lourenço, W. R.; Velten, J. (2024). "Possible estimation of litter size in palaeoburmesebuthid scorpions from Early Cretaceous Burmite (Chelicerata: Scorpiones)". Faunitaxys. 12 (49): 1–4. doi:10.57800/faunitaxys-12(49).
^ abcdKhaustov, A. A.; Lindquist, E. E.; Perkovsky, E. E.; Vasilenko, D. V.; Vorontsov, D. D. (2024). "Review of fossil heterostigmatic mites (Acari: Heterostigmata) from late Eocene Rovno Amber. II. Family Resinacaridae, with redescription of Resinacarus resinatus (Vitzthum), four new species and a new genus". Systematic and Applied Acarology. 29 (9): 1244–1282. doi:10.11158/saa.29.9.5.
^Khaustov, A. A.; Vorontsov, D. D.; Lindquist, E. E. (2024). "The oldest evidence of symbiosis between mites and fungi with description of a new genus and species of Trochometridiidae (Acari: Heterostigmata) from Cretaceous amber". Systematic and Applied Acarology. 29 (4): 475–500. doi:10.11158/saa.29.4.3.
^Bicknell, R. D. C.; Smith, P. M.; Goodman, A.; Schoon, I.; Zhen, Y. Y. (2024). "Novel pterygotid sea scorpions from the Silurian and Devonian of Gondwana". Gondwana Research. 135: 282–292. Bibcode:2024GondR.135..282B. doi:10.1016/j.gr.2024.08.005.
^Makled, W. A.; Al-Auqadi, R. A.; Al-Juboury, A. I.; El Garhy, M. M.; Alarifi, N.; Omar, N.; Mahmoud, A. (2024). "Eurypterid setae and cuticle fragments from the Ora Formation (Upper Devonian) of Iraq". Palynology. 2445034. doi:10.1080/01916122.2024.2445034.
^Braddy, S. J. (2024). "Carcinosomatoid eurypterid palaeoecology and phylogeny: ichnology and palaeocommunities". Neues Jahrbuch für Geologie und Paläontologie – Abhandlungen. 312 (2): 167–181. doi:10.1127/njgpa/2024/1206.
^Bicknell, R. D. C.; Gaines, R. R.; Hopkins, M. J. (2024). "Late Ordovician eurypterid preserves oldest euchelicerate musculature in pyrite". Biology Letters. 20 (7). 20240211. doi:10.1098/rsbl.2024.0211. PMC 11252848. PMID38982848.
^Poschmann, M. J.; Tollerton, V. P. (2024). "Note on the metastoma of the Silurian sea scorpion Eysyslopterus patteni (Arthropoda, Eurypterida, Adelophthalmidae)". Neues Jahrbuch für Geologie und Paläontologie - Abhandlungen. 312 (3): 275–279. doi:10.1127/njgpa/2024/1212.
^Cheng, E.; Briggs, D. E. G. (2024). "Genital Appendages of the Giant Pterygotid Eurypterid Acutiramus from the Silurian (Pridoli) Bertie Group of North America". Bulletin of the Peabody Museum of Natural History. 65 (2): 305–315. doi:10.3374/014.065.0201.
^Bicknell, R. D. C.; Kimmig, J.; Smith, P. M.; Scherer, T. (2024). "An enigmatic euchelicerate from the Mississippian (Serpukhovian) and insights into invertebrate preservation in the Bear Gulch Limestone, Montana". American Museum Novitates (4008): 1–14. doi:10.1206/4008.1. hdl:2246/7344. S2CID267427036.
^Howard, R. J. (2024). "The Euchelicerate Limuloides and Other Bunodidae from the Upper Silurian (Wenlock Přĺdolĺ) of England". Monographs of the Palaeontographical Society. 178 (669): 1–41. Bibcode:2024MPalS.178....1H. doi:10.1080/02693445.2024.2426344.
^ abcVega, F. J.; Nyborg, T.; Garassino, A.; Pasini, G.; Aguilar-Pérez, J.; Borges-Sellén, C. R.; Arano-Ruiz, A. F.; Quintero-Vázquez, S. J.; Gutiérrez-Domech, R. M. (2024). "Upper Cretaceous Crustacea from central Cuba". Journal of South American Earth Sciences. 138. 104845. Bibcode:2024JSAES.13804845V. doi:10.1016/j.jsames.2024.104845. S2CID267965782.
^Nyborg, T.; Garassino, A.; Vega, F. J.; Ross, R. L. M. (2024). "A new fossil frog crab (Brachyura, Raninoidea) from the late Campanian of Hornby Island (British Columbia, Canada)". Neues Jahrbuch für Geologie und Paläontologie – Abhandlungen. 310 (3): 209–217. doi:10.1127/njgpa/2023/1177.
^Ossó, À.; van Bakel, B. W. M.; Artal, P.; Domínguez, J. L. (2024). "A new species of Distefania Checchia-Rispoli, 1917 (Crustacea: Decapoda: Brachyura), from the mid-Cretaceous of Iberia". Bulletin of the Mizunami Fossil Museum. 51 (1): 5–14. doi:10.50897/bmfm.51.1_5.
^ abDe Angeli, A.; Lovato, A. (2024). "Due nuove specie di portunidi (Crustacea, Decapoda) dell'Eocene inferiore di cava Grola di Cornedo Vicentino (Vicenza, Italia nord orientale)". Lavori – Società Veneziana di Scienze Naturali. 49: 65–73.
^Nyborg, T.; Garassino, A. (2024). "Icriocarcinus aldersonorum n. sp. (Brachyura, Lithophylacidae) from the Late Cretaceous of California, USA". Neues Jahrbuch für Geologie und Paläontologie - Abhandlungen. 311 (3): 343–348. doi:10.1127/njgpa/2024/1196.
^Kočová Veselská, M.; Rogov, M.; Gašparič, R.; Hyžný, M.; Ippolitov, A. P.; Luque, J.; Košťák, M. (2024). "A unique insight into the growth of necrocarcinoid crabs (Malacostraca: Decapoda: Brachyura): Evidence from the Upper Cretaceous of Siberia (Russia), with a description of a new species". Cretaceous Research. 168. 106053. doi:10.1016/j.cretres.2024.106053.
^Winkler, N.; Schweigert, G.; Winkler, A.; Härer, J. (2024). "The first fossil bresiliid shrimp (Crustacea: Decapoda: Caridea) from the Solnhofen Lithographic Limestones (Upper Jurassic, Southern Germany)". Neues Jahrbuch für Geologie und Paläontologie - Abhandlungen. 311 (3): 281–297. doi:10.1127/njgpa/2024/1192.
^De Angeli, A.; Bellin, B. (2024). "Nuovi crostacei decapodi dell'Eocene di Nanto (Monti Berici, Vicenza, Italia nord orientale)". Lavori – Società Veneziana di Scienze Naturali. 49: 55–64.
^Pasini, G.; Garassino, A. (2024). "A new portunid crab (Brachyura, Portunoidea) from the upper Middle Miocene of Sardinia, Italy". Neues Jahrbuch für Geologie und Paläontologie – Abhandlungen. 310 (3): 283–291. doi:10.1127/njgpa/2023/1183.
^Liu, Y.; Bicknell, R. D. C.; Smith, P. M.; Fan, R.; Richards, M. D.; Terezow, M. G.; Zong, R.; Gong, Y. (2024). "Reappraisal of New Zealand and Australian Ordovician caryocaridids presents insight into phyllocarid phylogeny". Journal of Systematic Palaeontology. 22 (1). 2417653. Bibcode:2024JSPal..2217653L. doi:10.1080/14772019.2024.2417653.
^Mychko, E. V.; Schweitzer, C. E.; Feldmann, R. M. (2024). "The first report of Silvacarcinus (Crustacea: Brachyura: Orithopsidae) from the Upper Cretaceous of Southern Cis-Urals (Orenburg Oblast, Russia)". Neues Jahrbuch für Geologie und Paläontologie - Abhandlungen. 311 (2): 165–173. doi:10.1127/njgpa/2024/1188.
^ abcGarassino, A.; Pasini, G.; Giusberti, L.; Calzoni, P. (2024). "A new decapod crustacean assemblage from the lower Eocene of Solteri (Trentino-Alto Adige region, northern Italy)". Bollettino della Società Paleontologica Italiana. 63 (3): 275–287. doi:10.4435/BSPI.2024.18 (inactive 31 December 2024).{{cite journal}}: CS1 maint: DOI inactive as of December 2024 (link)
^Charbonnier, S.; Garassino, A.; Schweigert, G.; Simpson, M. I. (2024). "New record of the rare lobster Uncina posidoniae Quenstedt, 1851 from the Early Jurassic of France and U. ultima n. sp. from the Late Jurassic of Germany (Decapoda, Astacidea, Uncinidae)". Neues Jahrbuch für Geologie und Paläontologie - Abhandlungen. 313 (2): 137–144. doi:10.1127/njgpa/2024/1224.
^Schweitzer, C. E. (2024). "Revision of and additions to early Cenozoic Brachyura (Crustacea: Dromiacea: Eubrachyura) from the USA". Bulletin of the Mizunami Fossil Museum. 51 (1): 55–65. doi:10.50897/bmfm.51.1_55.
^Barros, O. A.; Oliveira, P. V.; Saraiva, A. Á. F. (2024). "New data and redescription of Kellnerius jamacaruensis Santana et al., 2013, a Palaemonidae shrimp from the Araripe Basin in northeastern Brazil". Palaeoworld. 34. doi:10.1016/j.palwor.2024.05.005.
^Panzeri, K. M.; Bogan, S.; Raigemborn, M. S.; Pagani, M. A.; Chimento, N.; Agnolín, F. L.; Martinelli, A. G. (2024). "Purported crushing teeth of actinopterygian fishes from the Late Cretaceous of Patagonia reinterpreted as crustacean bio-gastroliths". Journal of South American Earth Sciences. 149. 105179. Bibcode:2024JSAES.14905179P. doi:10.1016/j.jsames.2024.105179.
^LaBonte, C. E.; Schweitzer, C. E.; Feldmann, R. M. (2024). "Revision of a Cretaceous dromiacean crab (Decapoda: Brachyura) from North America". Neues Jahrbuch für Geologie und Paläontologie - Abhandlungen. 311 (3): 349–352. doi:10.1127/njgpa/2024/1197.
^Shaffer, A. B.; Schweitzer, C. E. (2024). "Diversity, environments, and biogeography of Homoloida (Decapoda: Brachyura) from the Late Jurassic to the present". Journal of Crustacean Biology. 44 (4). ruae061. doi:10.1093/jcbiol/ruae061.
^ abcdCeolin, D.; Santos Filho, M. A. B.; Concheyro, A.; Fauth, G. (2024). "Ostracods from the Cretaceous–Palaeogene boundary at El Matuasto Section, Neuquén Basin, Argentina: taxonomy, palaeoecological and palaeobiogeographical inferences". Papers in Palaeontology. 10 (2). e1549. Bibcode:2024PPal...10E1549C. doi:10.1002/spp2.1549.
^ abMukai, K.; Tanaka, G. (2024). "Middle Miocene Ostracodes from the Kaigarabashi Formation in Hokkaido, Northern Japan: Paleoenvironmental Significance". Paleontological Research. 28 (4): 452–468. doi:10.2517/PR230024.
^ abcdeAlmeida-Lima, D. S.; Guzmán, J.; Maia, R. J. A.; Sousa, A. J.; Piovesan, E. K. (2024). "New non-marine ostracod genera and species of Aptian age from Araripe Basin, northeast Brazil". Zootaxa. 5496 (3): 401–416. doi:10.11646/zootaxa.5496.3.6. PMID39646524.
^ abTesakova, E. M. (2024). "New Ostracod Genera Bathoniella (Bathonian and Lower Callovian of the East European Platform and Northern Germany) and Parabathoniella (Lower and Middle Bathonian of Scotland). Part 1: Taxonomy". Stratigraphy and Geological Correlation. 32 (4): 396–419. Bibcode:2024SGC....32..396T. doi:10.1134/S0869593824700072.
^ abFerreira, R. R. M.; Ramos, M. I. F. (2024). "New contributions to the taxonomy of non-marine ostracods from the Neogene megawetlands, western of the Amazonas State, Brazil". Journal of South American Earth Sciences. 144. 105017. doi:10.1016/j.jsames.2024.105017.
^Li, M.-S. (2024). "Rudolfestatscaphium nom. nov.: Replacement Name for the Preoccupied Genus Name Scaphium Jordan, 1964". Paleontological Journal. 57 (3 supplement): S285. doi:10.1134/S0031030123600075.
^ abcdGale, A. S. (2024). "British fossil Cirripedia. Part 1, introduction. Iblomorpha, Eolepadomorpha, Archaeolepadomorpha and Pollicipedomorpha". Monographs of the Palaeontographical Society. 178 (668): 1–104. Bibcode:2024MPalS.178....1G. doi:10.1080/02693445.2024.2420447.
^Xue, Y.; Li, G. (2024). "New spinicaudatan species of Middle–Upper Jurassic Yaojie Formation from Lanzhou, Gansu, northwest of China". Palaeoentomology. 7 (2): 245–253. doi:10.11646/palaeoentomology.7.2.8.
^Xue, Y.; Li, G.; Teng, X. (2024). "SEM morphological study on holotype of spinicaudatan Shipingia luchangensis (Chen, 1974) comb. nov. from Upper Triassic of Huili, Sichuan, southwest China". Historical Biology: An International Journal of Paleobiology: 1–7. doi:10.1080/08912963.2024.2328272.
^Wu, Y.; Pates, S.; Zhang, M.; Lin, W.; Ma, J.; Liu, C.; Wu, Y.; Zhang, X.; Fu, D. (2024). "Exceptionally preserved radiodont arthropods from the lower Cambrian (Stage 3) Qingjiang Lagerstätte of Hubei, South China and the biogeographic and diversification patterns of radiodonts". Papers in Palaeontology. 10 (4). e1583. Bibcode:2024PPal...10E1583W. doi:10.1002/spp2.1583.
^Tang, H. Y.; Sone, M.; Brezinski, D. K.; Shaari, H.; Teng, Y. H.; Minhat, F. I. (2024). "Revision of the Early Carboniferous trilobite Linguaphillipsia, with a new species from Terengganu in Peninsular Malaysia". Alcheringa: An Australasian Journal of Palaeontology. 48 (3): 448–463. Bibcode:2024Alch...48..448T. doi:10.1080/03115518.2024.2358036.
^ abGhobadi Pour, M.; Popov, L. E.; Kebria-ee Zadeh, M.-R. (2024). "First record of the Parabolina Fauna in the Cambrian (Furongian) of Alborz, northern Iran". Journal of Paleontology: 1–17. doi:10.1017/jpa.2024.5.
^Pereira, P.; Rábano, I.; Gutiérrez-Marco, J. C. (2024). "The trilobite assemblage of the Declivolithus Fauna (lower Katian, Ordovician) of Morocco: a review with new data". Journal of Paleontology: 1–34. doi:10.1017/jpa.2023.77. hdl:10261/343543. S2CID267174999.
^El Albani, A.; Mazurier, A.; Edgecombe, G. D.; Azizi, A.; El Bakhouch, A.; Berks, H. O.; Bouougri, E. H.; Chraiki, I.; Donoghue, P. C. J.; Fontaine, C.; Gaines, R. R.; Ghnahalla, M.; Meunier, A.; Trentesaux, A.; Paterson, J. R. (2024). "Rapid volcanic ash entombment reveals the 3D anatomy of Cambrian trilobites". Science. 384 (6703): 1429–1435. Bibcode:2024Sci...384.1429E. doi:10.1126/science.adl4540. PMID38935712.
^Singla, G.; Singh, B. P.; Bhargava, O. N.; Kaur, R.; Verma, V. (2024). "Oryctocephalus salteri biozone (Wuliuan, Miaolingian) in the Sumna Valley, Spiti, Himalaya". Annales de Paléontologie. 111 (1). 102749. doi:10.1016/j.annpal.2024.102749.
^Yang, A.; Chen, B.; Sun, Z.; Tostevin, R.; He, T.; Chen, X.; Chen, J.; Lu, M.; Hu, C.; Du, S.; Chen, J.; Jiao, W.; Zhu, M. (2024). "Shallow ocean deoxygenation drove trilobite turnover during the late Cambrian SPICE event". Geology. 52 (9): 661–666. Bibcode:2024Geo....52..661Y. doi:10.1130/G52200.1.
^Hou, J.-B.; Hopkins, M. J. (2024). "Trilobite moulting behaviour variability had little association with body proportions". Palaeontology. 67 (5). e12723. doi:10.1111/pala.12723.
^Losso, S. R.; Ortega-Hernández, J. (2024). "Conserved exopodite morphology in three-dimensionally preserved trilobites from the Walcott-Rust Quarry (Mohawkian, Ordovician) of New York, USA". Arthropod Structure & Development. 81. 101371. Bibcode:2024ArtSD..8101371L. doi:10.1016/j.asd.2024.101371. PMID39033632.
^Bicknell, R. D. C.; Smith, P. M.; Miller-Camp, J. (2024). "An atlas of malformed trilobites from North American repositories. Part 1. The Indiana University Paleontological Collection". American Museum Novitates (4026): 1–16. doi:10.1206/4026.1. hdl:2246/7380.
^Bicknell, R. D. C.; Smith, P. M.; Hopkins, M. J. (2024). "An atlas of malformed trilobites from North American repositories. Part 2. The American Museum of Natural History". American Museum Novitates (4027): 1–36. doi:10.1206/4027.1. hdl:2246/7381.
^Korovnikov, I. V.; Bushuev, E. V. (2024). "Revision of the Trilobite Genus Calodiscus Howell, 1935 (Siberian Platform)". Paleontological Journal. 58 (6): 684–696. Bibcode:2024PalJ...58..684K. doi:10.1134/S0031030124601002.
^Laville, T.; Lukeneder, P.; Lukeneder, A. (2024). "Revision of the thylacocephalan biota from the Upper Triassic Polzberg Konservat-Lagerstätte, Austria". Acta Palaeontologica Polonica. 69 (4): 713–730. doi:10.4202/app.1180.2024 (inactive 31 December 2024).{{cite journal}}: CS1 maint: DOI inactive as of December 2024 (link)
^O'Flynn, R. J.; Williams, M.; Yu, M.; Guo, J.; Audo, D.; Schmidt, M.; Mai, H.; Liu, Y.; Edgecombe, G. D. (2024). "The early Cambrian Bushizheia yangi and head segmentation in upper stem-group euarthropods". Papers in Palaeontology. 10 (3). e1556. Bibcode:2024PPal...10E1556O. doi:10.1002/spp2.1556.
^Izquierdo-López, A.; Caron, J.-B. (2024). "The Cambrian Odaraia alata and the colonization of nektonic suspension-feeding niches by early mandibulates". Proceedings of the Royal Society B: Biological Sciences. 291 (2027). 20240622. doi:10.1098/rspb.2024.0622. PMC 11463219. PMID39043240.
^Braddy, S. J. (2024). "Euthycarcinoid ecology and evolution". Neues Jahrbuch für Geologie und Paläontologie – Abhandlungen. 312 (1): 15–30. doi:10.1127/njgpa/2024/1199.
^Álvarez-Rodríguez, M.; Riquelme, F.; Hernández-Patricio, M.; Cupul-Magaña, F. (2024). "Diplopoda in the world fossil record". Zoological Systematics. 49 (3): 185–245. doi:10.11865/zs.2024201.
^Loewen, E. J. T.; Balkwill, M. A.; Mattioli, J.; Cockx, P.; Velez Caicedo, M.; Muehlenbachs, K.; Tappert, R.; Borkent, A.; Libke, C.; Engel, M. S.; Somers, C.; McKellar, R. C. (2024). "New Canadian amber deposit fills gap in fossil record near end-Cretaceous mass extinction". Current Biology. 34 (8): 1762–1771.e3. Bibcode:2024CBio...34.1762L. doi:10.1016/j.cub.2024.03.001. PMID38521062.