This list of fossil molluscs described in 2024 is a list of new taxa of fossilmolluscs that were described during the year 2024, as well as other significant discoveries and events related to molluscan paleontology that occurred in 2024.
A member of the family Cardioceratidae belonging to the subfamily Arctocephalitinae. The type species is "Paracadoceras" nageli Mitta (2005); genus also includes "Paracadoceras" keuppi Mitta (2005), "Paracadoceras" efimovi Mitta (2005) and "Cadoceras (Catacadoceras)" infimum Gulyaev & Kiselev (1999).
A member of the family Maenioceratidae. The type species is T. klugi; genus also includes T. eculeus, T. fuscina and T. paucum.
Ammonite research
Evidence indicating that morphologically complex ammonoid taxa often had reduced longevity and higher origination and extinction rates compared to morphologically simple ones is presented by Miao et al. (2024).[20]
Morón-Alfonso, Allaire & Ginot (2024) compare the results of application of two methods used to analyze the ammonoid whorl profile shape, interpreting different methods as better suited for taxa with highly defined umbilical walls and for ones with smooth umbilical walls or with reduced whorl overlap.[21]
A study on the affinities of "Tornoceras" baldisi, based on data from new specimens from the Chigua Formation (Argentina), is published by Allaire et al. (2024), who transfer this species to the genus Epitornoceras, and interpret the uppermost levels of the Chavela Member of the Chigua Formation preserving its fossils as Givetian in age.[22]
Piñeiro, Rodao & Núñez Demarco (2024) describe clusters of tiny ammonite shells from the San Gregorio Formation (Uruguay), found in nodules interpreted as reworked from underlying Devonian levels, and interpret this findings as possible evidence that ammonites laid eggs in floating or fixed gelatinous masses and hatched as miniatures of their parents that shared the same habitat with adult ammonites.[23]
A study on the origin of the Permian ammonite superfamily Popanoceratoidea is published by Leonova (2024).[24]
Description of the Olenekian ammonite assemblage from the Osawa Formation (Japan), interpreted as indicative of affinities with ammonite faunas from South Primorye and from the Tethys, is published by Shigeta, Endo & Inose (2024).[25]
Taxonomic revision of Carnian ammonites from the Polzberg Lagerstätte (Austria) is published by Lukeneder & Lukeneder (2024).[26]
Mironenko & Smurova (2024) describe ammonite specimens from the Jurassic localities in Russia preserved with the three-dimensional cameral membranes in their phragmocones which differed in their spatial arrangement and complexity from those known in other ammonites, and study the formation of all types of ammonite cameral sheets.[27]
Mitta & Mironenko (2024) describe a large-sized upper jaw of a member of the genus Lytoceras from the Bajocian strata from the Kuban basin (Karachay-Cherkessia, Russia), representing the oldest complete jaw of this type and the only upper jaw of a member of Lytoceratina reported to date.[28]
Sandoval (2024) describes fossil material of Latiwitchellia evoluta from the Middle Jurassic strata from the Betic Cordillera (Spain), representing the first known record of this species outside Eastern Pacific, and interprets this finding as indicating that westernmost Tethys and Eastern Pacific domains were connected through the Hispanic Corridor during the early Bajocian.[29]
The earliest occurrence of genus Macrocephalites known to date is reported from the Bathonian Kachchh Basin (India) by Jain (2024).[30]
Description of Late Jurassic ammonites from the Spiti Shale Formation of the Spiti and Zanskar regions of the Himalayas (India) is published by Bhosale et al. (2024).[31]
López-Palomino, Villaseñor & Palma-Ramírez (2024) study the affinities of Late Jurassic ammonites from the Santiago Formation (Mexico), providing evidence of biogeographic affinities with ammonites from Cuba, Chile and Argentina, as well as evidence of existence of the connection between the Tethys Ocean and the Pacific throughout the Oxfordian.[32]
A study on the relationship between septal complexity and ammonite diversity during the Cretaceous is published by Pérez-Claros (2024), who finds no evidence of a close relationship between oceanic anoxic events throughout the Cretaceous and worldwide evolutionary dynamics of ammonites.[33]
A study on changes of conch shape and septal spacing between successive chambers in Cretaceous ammonites from India, Madagascar and Japan throughout their ontogeny, interpreted as indicative of closer phylogenetic relationships between Perisphinctina and Ancyloceratina than with Lytoceratina or Phylloceratina, is published by Nishino et al. (2024).[34]
Frau et al. (2024) designate the neotype for the Early Cretaceous ammonite species Ammonites flexisulcatus, and assign this species to the desmoceratid genus Caseyella.[35]
A study on the morphological variation of specimens of Placenticeras from the Upper Cretaceous strata of the eastern Gulf Coastal Plain (mostly from Alabama, United States) is published by Mohr, Tobin & Tompkins (2024), who interpret the studied sample as including either a single species or two successive species, find no support for the recognition of Placenticeras and Stantonoceras as distinct genera, and report likely evidence of sexual dimorphism.[36]
A study on the diversification dynamics of Late Cretaceous ammonites is published by Flannery-Sutherland et al. (2024), who find evidence of regional differences of diversity trends, but no evidence of a progressive global decline through the Late Cretaceous.[38]
A member of the family Pseudonautilidae. The type species is A. fournieri; genus also includes new species A. sauvageti and A. grulkei, as well as "Nautilus" erycinus Tagliarini (1901).
A study on the shell morphology of Calorthoceras during its early ontogeny is published by Manda & Turek (2024), who assign the studied orthocerid to the family Dawsonoceratidae.[54]
A study on the morphological diversity of rhyncholites and rhynchoteuthis from the Triassic to present, providing evidence of previously unrecognized variation in the shape of nautilid beaks and their adaptations to diverse diets, is published by Souquet et al. (2024).[55]
Schweigert, Haye & Stössel (2024) report the discovery fossil material of Pictonautilus verciacensis from the upper Bathonian strata of Rotes Erzlager Member of the Wutach Formation (Germany) and upper Bathonian or lower Callovian strata in Poland, expanding known geographical range of the species, and interpret Nautilus (Paracenoceras) wilmae Jeannet (1951) as a junior synonym of "Paracenoceras" calloviense Oppel (1857).[56]
New estimates for the body size of Megateuthis, including estimates of full body length of up to 2.17 m in M. suevica and possibly up to 3.11 m in M. elliptica, are presented by Klug et al. (2024).[58]
A study on calcite from Early Cretaceous belemniterostra from the Mahajanga Basin (Madagascar), providing evidence of the Valanginian cooling event in the Southern Hemisphere, is published by Wang et al. (2024).[59]
Fossil material of Paraplesioteuthis sagittata and ?Loligosepia sp. indet. from the Toarcian strata of the Causses Basin (France), providing evidence of previously unrecognized diversity of gladius-bearing coleoids in the studied basin, is described by Jattiot et al. (2024), who argue that P. sagittata might have originated in the Mediterranean domain.[60]
New information on the anatomy of Dorateuthis syriaca and its variation among members of this species is presented by Rowe et al. (2024).[61]
Serafini et al. (2024) describe nautiloid jaw elements associated with marine reptile carcasses from the strata of the Rosso Ammonitico Veronese (Italy) ranging from the Bajocian to the Kimmeridgian, interpreted as the first unambiguous evidence of nautiloids scavenging Mesozoic marine reptile remains, as well as multiple belemnite specimens associated with the holotype of Neptunidraco ammoniticus, interpreted as likely evidence of mass mortality after spawning.[62]
A member of Trigoniida belonging to the family Vaugoniidae. The type species is "Trigonia" hispida Kitchin (1903); genus also includes "Trigonia" exortiva Kitchin (1903), "Trigonia" gracilis Kitchin (1903), "Trigonia" jumarensis Kitchin (1903), "Trigonia" kutchensis Kitchin (1903) and "Myophorella" quennelli Cox (1965).
A member of the family Trigoniidae. The type species is "Trigonia" hemisphaerica Lycett (1853); genus also includes C. culleni (Lycett, 1877), C. elegantissima (Meek, 1873), C. kidugalloensis (Cox, 1965), C. densestriata (Behrendsen, 1892), C. gadoisi (Cossmann, 1911), C. langrunensis (Bigot, 1893), C. parva (Kitchin, 1903) and C. ranvilliana (Bigot, 1893).
A pinnid bivalve. The type species is F. meeki; genus also includes new species F. bobwilliamsi and F. winchelli, as well as "Aviculopinna" knighti Beede (1901).
A pectinoid bivalve. The type species is K. kolymaensis (Maslennikow); genus also includes K. mutabilis (Licharew), as well as new species K. praekolymaensis.
A member of the family Trigoniidae. The type species is M. asymmetrica; genus also includes M. senex (Kobayashi & Mori, 1954), M. brevicostata (Kitchin, 1903) and M. cristagalli (Bigot, 1893).
A member of Trigoniida belonging to the family Vaugoniidae. The type species is "Orthotrigonia" midareta Kobayashi & Mori (1955); genus also includes "Orthotrigonia" corrugata Kobayashi & Mori (1955), "Orthotrigonia" sohli Poulton (1979) and "Scaphotrigonia" somensi Kobayashi & Tamura (1957).
A pinnid bivalve. The type species is O. boonensis; genus also includes new species O. modesta, as well as "Pinna" consimilis Walcott (1884), "Pinna" lata Beede (1902) and "Aviculopinna" sagitta Chronic (1952).
A member of Trigoniida belonging to the family Myophorellidae. The type species is "Trigonia" imbricata Sowerby (1826); genus also includes R. parcinoda (Lycett, 1872).
A member of Trigoniida belonging to the family Vaugoniidae. Genus includes "Vaugonia (Orthotrigonia)" quiltyi Kelly (1995) and "Orthotrigonia" waipahiensis Fleming (1987)
Evidence indicative of different dynamics of the rates of origination and net diversification in infaunal and epifaunal bivalves throughout the Phanerozoic is presented by Foote, Edie & Jablonski (2024).[88]
A study on the anatomy and affinities of Shaninopsis Johnston, Collom & Ebbestad (2024).[89]
Isozaki (2024) reports the first discovery of alatoconchid fossil material from the Capitanian strata from the Iwaizaki limestone (South Kitakami belt; Japan) and from the Chandalaz Formation (Sergeevka belt; Primorye, Russia).[90]
Evidence indicating that, in spite of significant decrease in taxonomic diversity, the functional diversity of bivalves of only slightly affected by the Permian–Triassic extinction event is presented by Wang et al. (2024).[91]
A study on the recovery of bivalves in the aftermath of the Permian–Triassic extinction event, providing evidence of an increase in endemicity beginning in the Middle Triassic, is published by Echevarría & Ros-Franch (2024).[92]
Moneer et al. (2024) revise CampanianTethyan oysters from the North Eastern Desert of Egypt, who interpret the studied fossils as indicative of the primary migration pattern of oysters from the Southern Tethys margin towards the East–West direction, as well as indicative of a transition towards deeper environments during the middle-late Campanian.[93]
Saha et al. (2024) describe fossil material of Seebachia bronni from the Tithonian Jhuran Formation, representing the first record of the species from India and its oldest record globally reported to date.[94]
Pérez & Berezovsky (2024) study the phylogenetic affinities of Malarossia from the Eocene of Ukraine, recovering it as an early diverging genus within the carditid subfamily Scalaricarditinae.[95]
Evidence from oxygen stable isotope analysis of bivalve shells from the Coralline Crag Formation (United Kingdom), interpreted as likely indicative of glacial/interglacial type climate fluctuations during the early Pliocene resulting in the presence of species adapted to warmer conditions and to colder ones in the studied shell beds, is presented by Cudennec et al. (2024).[96]
A study on the evolutionary history of Mediterranean bivalves across the Zanclean-Calabrian interval, providing evidence of less intense and more gradual loss of biodiversity than previously estimated and of more severe loss of biodiversity suspension feeders compared to infaunal deposit feeders, is published by Mondanaro, Dominici & Danise (2024).[97]
Campbell (2024) revises the bivalve fossil record from the Pleistocene Waccamaw Formation (United States), expanding known bivalve diversity from this formation.[98]
A replacement name for Morgania Cossmann (1906; itself a replacement name for Irania Douvillé, 1904). The type species is "Vicarya" fusiformis Hislop (1860).
A member of the family Muricidae. The type species is "Murex" pereger Beyrich (1854); genus also includes "Murex" sarroniensis Carez (1879), "Murex" hantoniensis Edwards in Lowry et al. (1866), "Hexaplex" brevaculeatus Janssen (1978) and "Murex (Poirieria)" cedillatus Cossmann & Peyrot (1924).
A member of Pleurotomariida belonging to the superfamily Pleurotomarioidea and possibly to the family Wortheniellidae. The type species is D. fassaensis; genus also includes "Worthenia (Humiliworthenia)" microstriata Nützel et al. (2018).
A member of the family Fasciolariidae. The type species is "Fasciolaria" ornata d'Orbigny (1852); genus also includes "Streptochetus" dispar Peyrot (1928) and "Fusus" zahlbruckneri Quenstedt (1884; possibly a synonym of E. ornatus).
A member of Pleurotomariida belonging to the superfamily Pleurotomarioidea and the family Stuorellidae. The type species is "Pleurotomaria" leda Kittl (1895); genus also includes "Pleurotomaria" mammiformis Kittl (1895) and "Perotrochus" vasculum Böhm (1895), as well as new species F. pericincta.
A member of Pleurotomariida belonging to the superfamily Pleurotomarioidea and the family Wortheniellidae. The type species is "Worthenia" marmolatae Kittl (1895); genus also includes "Worthenia" esinensis Kittl (1899), "Worthenia" zardini Yin & Yochelson (1983) and possibly "Worthenia" goederti Eckert (1955).
A member of the family Fasciolariidae. The type species is "Fusus" crispoides Kittl (1887); genus also includes new species F. grundensis and F. pseudocrispoides.
A member of the family Strombidae. The type species is J. praegracilis; genus also includes J. pinguis, J. cylindratus, J. kecil, J. subinermis and J. sondaicus.
A member of the family Clavilithidae. The type species is "Fusus" tjidamarensis Martin (1879); genus also includes "Fusus (Clavella)" tjaringinensis Martin (1895) and "Fusus (Clavella)" verbeeki Martin (1895).
A member of Pleurotomariida belonging to the superfamily Murchisonioidea and the family Plethospiridae. The type species is "Worthenia" magna Böhm (1895); genus also includes new species M. crassa.
A member of the family Muricidae. The type species is "Chicoreus (Phyllonotus)" initialis Vokes (1990); genus also includes "Murex" packardi Dickerson (1915), "Pterynoyus" newtoni Eames (1957), "Murex" diderrichi Vincent (1913), "Murex" bicostatus Deshayes (1835).
A member of Pleurotomariida possibly belonging to the superfamily Murchisonioidea and the family Plethospiridae. The type species is P. elongata; genus also includes "Cheilotoma" avisii Böhm (1895) and possibly P? monarii Dominici, Danise & Tintori (2024).[77]
A member of the family Prodotiidae. The type species is "Pollia" mariae Hoernes & Auinger (1890); genus also includes "Cantharus (Pollia)" beregovi Kojumdgieva in Kojumdgieva & Strachimirov (1960).
A member of Pleurotomariida belonging to the superfamily Pleurotomarioidea and the family Wortheniellidae. The type species is "Worthenia" supraornata Kittl (1895); genus also includes "Worthenia" tuberculifera Koken (1900) and "Worthenia" ligylirae Yin & Yochelson (1983).
A study on the phylogenetic relationships of members of Pleurotomariida is published by Karapunar, Höhna & Nützel (2024).[157]
Sun et al. (2024) describe fossils of large-bodied members of the genus Toxoconcha from the Middle Triassic Qingyan biota (Guizhou, China), estimating the largest specimen to have original height of around 350 mm.[158]
Merle, Goldstein & McKinney (2024) report cases of cannibalism in Crassimurex calcitrapa from the Eocene strata from the Paris Basin (France), representing the earliest occurrence of this behavior in the muricid fossil record.[159]
Evidence of preservation of intact polyene pigments in gastropod shells from the Miocene Vienna Basin (Austria and Hungary) is presented by Wolkenstein, Schmidt & Harzhauser (2024).[160]
A study on the diversity of Miocene gastropods from the Central Paratethys, providing evidence of a Middle Miocene species richness hotspot resulting from the formation of an archipelago-like landscape and the Middle Miocene Climatic Optimum, as well as evidence of subsequent decline in biodiversity related to the Middle Miocene disruption, is published by Harzhauser et al. (2024).[161]
Tattersfield et al. (2024) study the ecological associations of extant terrestrial gastropods from the Laetoli-Endulen area (Tanzania) and compare them with Pliocene gastropod assemblages from Laetoli, interpreting gastropods from the Lower Laetolil beds as indicative of semi-arid environment, those from the Upper Laetolil Beds as indicative of a mosaic of forest, woodland and bushland habitats, and gastropods from the Upper Ndolanya Beds as indicative of humid environment.[162]
Evidence of a complex evolution of body size in gastropods from western Atlantic throughout the Pliocene-Pleistocene transition is presented by Anderson et al. (2024).[163]
Evidence of coordinated response of endemic Microcolpia and Theodoxus prevostianus from Lake Pețea (Romania) to Late Glacial and Holocene climate changes resulting in lake level changes, thermal water pulses and changes of availability of calcium and magnesium in shell construction is presented by Gulyás & Sümegi (2024).[164]
A member of Rostroconchia belonging to the family Bransoniidae. Genus includes new species A. magnifica. Published online in 2024, but the issue date is listed as December 2023.
A member of Rostroconchia belonging to the family Bransoniidae. Genus includes new species A. rara. Published online in 2024, but the issue date is listed as December 2023.
Wang et al. (2024) study Cambrian trace fossils assigned to the ichnogenus Climactichnites from the Elk Mound Group (Blackberry Hill, Wisconsin, United States), Archaeonassa from the Sellick Hill Formation (Australia) and Palaeobullia from the Buen Formation (Greenland), produced by animals moving on land millions of years before full terrestrialization, and interpret molluscs as most likely tracemakers; in the online supplemental material of the study the authors also argue that trace fossils from the Elk Mound Group assigned to the ichnogenus Protichnites resemble traces produced by marine gastropods, and that their asymmetry might be a result of chirality of mollusc shells.[175]
Roopnarine & Goodwin (2024) develop a new geometric model explaining the evolution of such features of conchiferan molluscs as coiling of the shell and bivalved type shells.[176]
A study on changes of composition of the Omma-Manganji mollusc fauna from the Sea of Japan in response to environmental changes during the Pliocene and Pleistocene is published by Amano (2024).[177]
Antoine et al. (2024) report the discovery of fossil material from Kourou (French Guiana) providing evidence of the presence of diverse foraminifer, plant and animal communities near the equator in the 130,000-115,000 years ago time interval, including evidence of the presence of a diverse mollusc assemblage indicative of stronger affinities between Guianas and the Caribbean than today.[178]
^Mitta, V. V. (2024). "The Genus Alatyroceras gen. nov. (Ammonoidea: Cardioceratidae, Arctocephalitinae) from the Upper Bathonian (Middle Jurassic) of the Russian Platform". Paleontological Journal. 58 (2): 160–170. doi:10.1134/S0031030123600294.
^ abcdefgMeister, C.; Schlögl, J.; Tomašovych, A.; Ippolitov, A.; Kogutich, S.; Stalennyi, O. (2024). "Systematics and biostratigraphy of ammonites across the Sinemurian/Pliensbachian boundary in the Ukrainian Carpathians (Pieniny Klippen Belt)". Neues Jahrbuch für Geologie und Paläontologie - Abhandlungen. 311 (1): 1–111. doi:10.1127/njgpa/2024/1185.
^ abZakharov, Y. D.; Borisov, I. V.; Smyshlyaeva, O. P.; Bondarenko, L. G.; Popov, A. M. (2024). "Early Triassic Ammonoids of the Genus Churkites Okuneva, 1990: Phylogenetic Reconstructions and New Finds in South Primorye". Paleontological Journal. 58 (1): 28–43. doi:10.1134/S003103012401009X.
^Shigeta, Y.; Izukura, M. (2024). "A New Species of Gabbioceras (Ammonitida, Tetragonitidae) from the Albian (Lower Cretaceous) of Hokkaido, Japan". Paleontological Research. 28 (4): 532–541. doi:10.2517/PR240010.
^Bert, D.; Bersac, S. (2024). "The ultimate Pulchelliidae (Ammonoidea, upper Barremian)". Annales de Paléontologie. 110 (2). 102663. doi:10.1016/j.annpal.2024.102663.
^Mao, K.; Yang, W.; Huang, Y.; Ma, Z. (2024). "A new ammonite genus of the Xiaowa Formation from Guanling Counties, Guizhou Province, China". Historical Biology: An International Journal of Paleobiology: 1–5. doi:10.1080/08912963.2024.2382230.
^Mitta, V. V. (2024). "First Records of Early Bajocian Leptosphinctes (Ammonoidea: Perisphinctidae) in the Northern Caucasus, Russia". Paleontological Journal. 58 (6): 642–648. doi:10.1134/S0031030124600963.
^Moliner, L. (2024). "Update of the dimorphic genus Olorizia (Ataxioceratidae, Ammonitina) and establishment of the species Olorizia calandensis sp. nov". Journal of Iberian Geology. doi:10.1007/s41513-024-00245-x.
^Nikolaeva, S. V.; Zhuravlev, A. V.; Dub, S. A.; Stepanova, T. I.; Mizens, G. A. (2024). "New Records of Ammonoids from the Mid-Carboniferous Boundary Beds of the Iset Section (Middle Urals)". Paleontological Journal. 58 (5): 516–528. doi:10.1134/S0031030124600690.
^Shigeta, Y.; Maeda, H. (2024). "A New Species of Tetragonites (Ammonoidea, Tetragonitidae) from the Maastrichtian of Southern Sakhalin, Russian Far East". Paleontological Research. 28 (4): 378–393. doi:10.2517/PR230022.
^Korn, D. (2024). "Late Devonian tornoceratid ammonoids from the Timan region, NW Russia". Neues Jahrbuch für Geologie und Paläontologie - Abhandlungen. 310 (3): 219–228. doi:10.1127/njgpa/2023/1178.
^Miao, L.; Liu, X.; Brayard, A.; Korn, D.; Dai, X.; Song, H. (2024). "Morphological complexity promotes origination and extinction rates in ammonoids". Current Biology. 34 (23): 5587–5594.e2. doi:10.1016/j.cub.2024.10.014. PMID39500319.
^Leonova, T. B. (2024). "Early Phylogeny of the Permian Superfamily Popanoceratoidea Hyatt (Ammonoidea)". Paleontological Journal. 58 (4): 415–425. doi:10.1134/S0031030124600331.
^Shigeta, Y.; Endo, Y.; Inose, H. (2024). "Spathian (Late Olenekian, Early Triassic) Ammonoids from the Osawa Formation, South Kitakami Belt, Northeast Japan". Paleontological Research. 28 (s1): 1–55. doi:10.2517/PR24S0001.
^Lukeneder, A.; Lukeneder, P. (2024). "Ammonoid taxonomy of the Carnian Polzberg Konservat-Lagerstätte in Austria". Jahrbuch der Geologischen Bundesanstalt. 162 (1–4): 27–55.
^Mironenko, A. A.; Smurova, I. A. (2024). "Cameral membranes in the phragmocones of Jurassic ammonites". PALAIOS. 39 (5): 145–160. doi:10.2110/palo.2023.017.
^Mitta, V. V.; Mironenko, A. A. (2024). "An Exceptionally Large Upper Jaw of Lytoceratoidea from the Upper Bajocian (Middle Jurassic) of the Northern Caucasus". Paleontological Journal. 58 (4): 426–433. doi:10.1134/S0031030124600318.
^Sandoval, J. (2024). "Latiwitchellia (Grammoceratinae?, Ammonitina, Middle Jurassic); an eastern Pacific ammonite in the Betic Cordillera (Southern Spain)". Journal of Iberian Geology. doi:10.1007/s41513-024-00253-x.
^Jain, S. (2024). "Note on the earliest records of genus Macrocephalites Zittel: implications for biostratigraphic correlations". Historical Biology: An International Journal of Paleobiology: 1–11. doi:10.1080/08912963.2024.2345223.
^Bhosale, S.; Pandey, D.; Alberti, M.; Fürsich, F.; Chaskar, K.; Thakkar, M. (2024). "Upper Jurassic (Oxfordian‒Tithonian) ammonites and biostratigraphy of the Spiti Shale Formation of the Spiti and Zanskar regions in the Indian Himalayas". Palaeontographica Abteilung A. 327 (4–6): 107–163. doi:10.1127/pala/2024/0145.
^Nishino, Y.; Komazaki, K.; Arai, M.; Hattori, A.; Uoya, Y.; Iida, T.; Wani, R. (2024). "Covariable changes of septal spacing and conch shape during early ontogeny: a common characteristic between Perisphinctina and Ancyloceratina (Ammonoidea, Cephalopoda)". Journal of Paleontology. 98 (1): 102–114. doi:10.1017/jpa.2023.96.
^Frau, C.; Bulot, L. G.; Moreno-Bedmar, J. A.; Matamales-Andreu, R.; Hourqueig, É. (2024). "A palaeobiological revision of the species Ammonites flexisulcatus d'Orbigny, 1840 (Ammonoidea) from the upper Aptian of southern France". Annales de Paléontologie. 110 (4). 102708. doi:10.1016/j.annpal.2024.102708.
^McCraw, J. R. C.; Tobin, T. S.; Cochran, J. K.; Landman, N. H. (2024). "Ammonites as paleothermometers: Isotopically reconstructed temperatures of the Western Interior Seaway track global records". Palaeogeography, Palaeoclimatology, Palaeoecology. 656. 112594. doi:10.1016/j.palaeo.2024.112594.
^ abShchedukhin, A. Yu. (2024). "New Species of the Genus Acanthonautilus (Solenochilidae, Nautilida) from the Early Permian Shakhtau Reef (Cis-Urals)". Paleontological Journal. 58 (5): 506–515. doi:10.1134/S0031030124600756.
^Baudouin, C.; Delanoy, G. (2024). "A new species of the genus Pseudaturoidea Shimansky, 1975 (Pseudonautilidae, Nautiloidea) from the Lower Cretaceous of south-eastern France". Annales de Paléontologie. 110 (4). 102735. doi:10.1016/j.annpal.2024.102735.
^Dernov, V. (2024). "Tainoceras luxaeterna sp. nov., a new Late Pennsylvanian nautiloid species (Cephalopoda) from the Donets Basin, eastern Ukraine". Historical Biology: An International Journal of Paleobiology: 1–6. doi:10.1080/08912963.2024.2427080.
^Fuchs, D.; Heyng, A. (2024). "A new stem-octopod (Coleoidea: Cephalopoda) from the Late Jurassic Eichstätt Archipelago – juveniles or dwarfed adults?". Neues Jahrbuch für Geologie und Paläontologie – Abhandlungen. 312 (1): 1–14. doi:10.1127/njgpa/2024/1198.
^Wang, T.; Yang, P.; He, S.; Hoffmann, R.; Zhang, Q.; Farnsworth, A.; Feng, Y.; Randrianaly, H. N.; Xie, J.; Yue, Y.; Zhao, J.; Ding, L. (2024). "Absolute age and temperature of belemnite rostra: Constraints on the Early Cretaceous cooling event". Global and Planetary Change. 233. 104353. Bibcode:2024GPC...23304353W. doi:10.1016/j.gloplacha.2023.104353.
^Mironenko, A.; Rogov, M.; Ippolitov, A.; Smurova, I.; Zakharov, V. (2024). "Ammonoid and coleoid jaws from the Upper Cretaceous of northern Siberia (Nizhnyaya Agapa River sections)". Cretaceous Research. 161. 105918. doi:10.1016/j.cretres.2024.105918.
^ abcdefghiYancey, T. E. (2024). "Revision of late Paleozoic pinnid genera and North American species of bivalve family Pinnidae". Bulletins of American Paleontology. 410: 1–83.
^ abcdHryniewicz, K.; Birgel, D.; Kaim, A.; Peckmann, J.; Kiel, S. (2024). "Evolutionarily ancient deep-water seep communities in the Eocene Tethys: examples from Buje (Croatia)". Papers in Palaeontology. 10 (3). e1560. doi:10.1002/spp2.1560.
^ abcdefGuerrini, V. B.; Matos, S. A.; Fürsich, F. T.; Rodrigues, M. G.; Varejão, F. G.; Warren, L. V.; Assine, M. L.; Simões, M. G. (2024). "Early Cretaceous bivalves of the Romualdo Formation, Araripe Basin, Northwestern Brazil". Cretaceous Research. 161. 105910. doi:10.1016/j.cretres.2024.105910.
^Pouwer, R. (2024). "The genus Arctica (Bivalvia, Arcticidae) in the Rupelian (Oligocene) of Belgium, with description of a new species". Cainozoic Research. 24 (2): 125–134.
^ abcdeCooper, M. R. (2024). "On the Orthotrigoniinae subfam. nov. (Trigoniida, Vaugoniidae), their palaeobiogeography, evolution and classification". Neues Jahrbuch für Geologie und Paläontologie - Abhandlungen. 311 (2): 175–190. doi:10.1127/njgpa/2024/1189.
^ abcKnight, R. I.; Collins, K. S.; Morris, N. J. (2024). "Revision of the British Lower Jurassic Astartinae (Bivalvia)". Journal of Molluscan Studies. 90 (2). eyae010. doi:10.1093/mollus/eyae010.
^ abcdWang, Y.; Fang, Z.-J.; Harper, D. A. T.; Zhang, Y.-C.; Wei, X.; Wang, G.-X.; Zhan, R.-B. (2024). "New Ordovician bivalves from the Indochina Palaeoplate in Dali, western Yunnan, Southwest China and their palaeogeographic significance". Palaeoworld. doi:10.1016/j.palwor.2024.09.007.
^Biakov, A. S. (2024). "Kolymopecten gen. nov.—a New Genus of Pectinoid Bivalves from the Lower–Middle Permian of the Boreal Superrealm". Paleontological Journal. 58 (5): 495–505. doi:10.1134/S003103012460063X.
^Yoshinaga, K.; Hirose, K.; Maeda, H. (2024). "A New Species of Nipponitrigonia (Trigoniidae, Bivalvia) from the Mid-Cretaceous Goshoura Group in Kyushu, Japan". Paleontological Research. 28 (4): 424–435. doi:10.2517/PR230012.
^ abDelvene, G.; Munt, M. C.; Paul, S.; Gangopadhyay, T. K. (2024). "A New Fauna from the Deccan Intertrappean Sediments of Central India Reveals KP Extinction and Survivorship, and Origins of Asiatic Freshwater Molluscs". Journal of the Geological Society of India. 100 (12): 1765–1772. doi:10.17491/jgsi/2024/174049.
^Matsubara, T. (2024). "A New Ungulinid Species (Bivalvia: Ungulinidae) from the Paleogene Kishima Formation in Saga Prefecture, Kyūshū, Southwest Japan". Venus (Journal of the Malacological Society of Japan). 82 (1–4): 55–65. doi:10.18941/venus.82.1-4_55.
^Biakov, A. S. (2024). "A New Family and Genus of Late Permian Pectinids of the Boreal Superrealm (Pectinida: Voluceropectinidae: Voluceropecten)". Paleontological Journal. 58 (2): 151–159. doi:10.1134/S0031030123600257.
^Isozaki, Y. (2024). "Additional occurrence of Capitanian (Guadalupian, Permian) gigantic bivalve Alatoconchidae from NE Japan and Primorye (Far East Russia): paleobiogeographical implication to NE segment of Greater South China". Bulletin of the National Museum of Nature and Science, Series C. 50: 27–37. doi:10.50826/bnmnsgeopaleo.50.0_27.
^Wang, Y.; Huang, Y.; Song, H.; Tian, L.; Chu, D.; Tong, J. (2024). "Functional diversity and resilience of bivalves after the Permian-Triassic mass extinction". Palaeogeography, Palaeoclimatology, Palaeoecology. 656. 112581. doi:10.1016/j.palaeo.2024.112581.
^Saha, R.; Paul, S.; Das, S. S.; Bardhan, S. (2024). "First and oldest record of Seebachia bronni, type species of Seebachia (Bivalvia: Astartidae), from the late Tithonian (Jurassic) of Kutch, India, and its palaeobiogeographic and evolutionary implications". Journal of Molluscan Studies. 90 (4). eyae053. doi:10.1093/mollus/eyae053.
^Pérez, D. E.; Berezovsky, A. A. (2024). "Phylogenetic relationships of Malarossia Berezovsky (Eocene, Ukraine) and trends in the size evolution of the carditids (Bivalvia, Carditidae)". Papers in Palaeontology. 10 (3). e1578. doi:10.1002/spp2.1578.
^Cudennec, J.-F.; Schöne, B. R.; Leng, M.; Harper, E. M.; Gofas, S.; Wesselingh, F. P.; Johnson, A. L. A. (2024). "Stable oxygen isotopes reveal different thermal regimes during the Early Pliocene in the southern North Sea Basin: a multi-species approach". Journal of Molluscan Studies. 90 (4). eyae051. doi:10.1093/mollus/eyae051.
^Campbell, T. (2024). "Under-documented micro species and the end of Carolinian endemism: bivalves of the Waccamaw Formation (basal Pleistocene, S.E. USA)". Journal of Molluscan Studies. 90 (4). eyae045. doi:10.1093/mollus/eyae045.
^ abcdeMiquel, S. E. (2024). "New species and records of freshwater and land gastropods from the Cretaceous of Argentina". Neues Jahrbuch für Geologie und Paläontologie - Abhandlungen. 310 (2): 119–131. doi:10.1127/njgpa/2023/1173.
^ abcdefghijklmnopqrstuvwxBanerjee, S.; Halder, K. (2024). "A new caenogastropod assemblage from the early Eocene of the Cambay Basin, western India, and its palaeoenvironmental implications". Papers in Palaeontology. 10 (5). e1590. doi:10.1002/spp2.1590.
^ abcdefghijklmnopqHarzhauser, M.; Landau, B. M. (2024). "The Colubrariidae, Eosiphonidae, Melongenidae, Pisaniidae, Prodotiidae and Tudiclidae (Gastropoda, Buccinoidea) of the Miocene Paratethys Sea". Zootaxa. 5427 (1): 1–110. doi:10.11646/zootaxa.5427.1.1.
^ abcdefghiLandau, B. M.; Harzhauser, M. (2024). "The Pliocene Gastropoda (Mollusca) of Estepona, southern Spain. Part 23: Colubrariidae, Pisaniidae, Tudiclidae, Nassariidae (in part) (Neogastropoda, Buccinoidea)". Cainozoic Research. 24 (1): 25–56.
^Ryan, H. E.; Travouillon, K. J.; Milne, L. A.; Martin, S. K.; Thorn, K. M.; Whisson, C. S. (2024). "A new Bothriembryon from the Nullarbor Plain, Western Australia, with insights on the age of Bothriembryon praecursor from Kangaroo Well, Northern Territory". Alcheringa: An Australasian Journal of Palaeontology. 48 (2): 402–417. doi:10.1080/03115518.2024.2323472.
^ abcdLozouet, P.; Lesport, J.-F. (2024). "Tonnoidea et Ficoidea (Mollusca, Gastropoda) de l'Oligocène supérieur (Chattien) du bassin de l'Adour (Sud-Ouest) de la France". Cossmanniana. 25: 3–99.
^ abcSymonds, M. F. (2024). "Three new species of Clithon (Mollusca, Gastropoda, Neritimorpha, Neritidae) are described from the Solent Group (late Eocene and early Oligocene) of the Hampshire Basin, England". Cainozoic Research. 24 (1): 15–24.
^ abcdefghijklHarzhauser, M.; Landau, B. M.; Vermeij, G. J. (2024). "The Dolicholatiridae and Fasciolariidae (Gastropoda, Buccinoidea) of the Miocene Paratethys Sea". Zootaxa. 5470 (1): 1–92. doi:10.11646/zootaxa.5470.1.1.
^Hirano, T.; Matsuoka, K. (2024). "A New Fossil Species of the Genus Cyclophorus (Gastropoda: Caenogastropoda: Cyclophoridae) from the Miocene Bihoku Group, Okayama Prefecture, Southwestern Japan". Venus (Journal of the Malacological Society of Japan). 82 (1–4): 101–108. doi:10.18941/venus.82.1-4_101.
^Lorenz, F. (2024). "A new Cypraea (Gastropoda: Cypraeidae) from the Pliocene of Indonesia". Conchylia. 55 (1–2): 25–29.
^Celzard, A. (2024). "A new Cypraedia (Gastropoda: Pediculariidae) from the Eocene of the Paris Basin, France". The Festivus. 56 (3): 165–173. doi:10.54173/F563165.
^ abLandau, B. M.; Harzhauser, M. (2024). "The Pliocene Gastropoda (Mollusca) of Estepona, southern Spain. Part 24: Dolicholatiridae and Fasciolariidae (Neogastropoda, Buccinoidea)". Cainozoic Research. 24 (2): 163–187.
^ abLandau, B. M.; Harzhauser, M. (2024). "The Pliocene Gastropoda (Mollusca) of Estepona, southern Spain. Part 25: Mitroidea and Turbinelloidea (Neogastropoda)". Cainozoic Research. 24 (2): 189–230.
^ abFehse, D.; Bertaccini, E.; Bongiardino, C.; Gardella, F.; Petracci, P.; Tabanelli, C. (2024). "Contributions to the knowledge of the Eratoidae. XXVI. Revision of the Mediterranean Pliocene Eratoidae". Bollettino Malacologico. 60 (1): 124–155. doi:10.53559/BollMalacol.2023.02.
^Dharma, B. (2024). "A new fossil species of Indolithes new genus from Java, Indonesia (Gastropoda: Fasciolariidae)". The Festivus. 56 (3): 154–164. doi:10.54173/F563154.
^ abDharma, B.; Liverani, V. (2024). "Two new digitate fossil Strombidae from Java, Indonesia, described in genus Lambis Röding, 1798". Conchylia. 55 (1–2): 52–58.
^ abcdeCelzard, A.; Dovesi, M. (2024). "First record of the genus Neosimnia (Gastropoda: Ovulidae) in the Eastern Indian Ocean, with the description of five fossil species from the Miocene of West Java, Indonesia". The Festivus. 56 (2): 89–100. doi:10.54173/f56289.
^Liverani, V. (2024). "A new fossil Persististrombus (Gastropoda, Strombidae) from west Java, Indonesia". Xenophora Taxonomy. 43: 19–22.
^Brunetti, M. M.; Della Bella, G. (2024). "Pseudotorinia pliomarthae, nuova specie del Pliocene del Bacino Mediterraneo (Gastropoda: Architectonicidae)". Bollettino Malacologico. 60 (1): 40–45. doi:10.53559/BollMalacol.2023.20.
^Kase, T.; Nakao, K.-I.; Yamaoka, Y.; Ishikawa, M. (2024). "Systematics, Paleoecology and Taphonomy of a New Pseudovertagus (Cerithiidae; Caenogastropoda; Mollusca) from the Upper Pliocene of Japan". Paleontological Research. 28 (4): 519–531. doi:10.2517/PR240011.
^Cilia, D. P. (2024). "On wentletraps (Gastropoda: Epitoniidae) from the Upper Globigerina Limestone Formation (Miocene: Langhian) of Malta". Bulletin of the National Museum of Natural History, Malta. 1 (1): 1–16.
^Saha, S.; Das, S. S.; Mondal, S.; Bose, K. (2024). "A new species of Talantodiscus (Family Pleurotomariidae Swainson, 1840) from the Late Jurassic of the Kutch, Western India". Journal of the Geological Society of India. 100 (12): 1765–1772. doi:10.17491/jgsi/2024/174048.
^Psarras, C.; Das, A.; Bhattacharya, B.; Halder, K. (2024). "Palaeoenvironmental implications of a turritelline-dominated assemblage from Upper Cretaceous carbonate rocks of Narmada Basin, India". Palaeoworld. doi:10.1016/j.palwor.2024.06.003.
^Anderson, B. M.; Allmon, W. D. (2023). "Phylogeny and Systematics of Fossil and Recent Vermicularia (Caenogastropoda: Turritellidae)". Malacologia. 66 (1–2): 1–59. doi:10.4002/040.066.0101.
^Biskupič, R. (2024). "Viennella baluki sp. nov. (Gastropoda: Turritellidae) from the Serravallian (Miocene) shallow-water seagrass paleoenvironments of the Vienna Basin (Central Paratethys)". Archiv für Molluskenkunde International Journal of Malacology. 153 (1): 23–31. doi:10.1127/arch.moll/153/023-031.
^ abcMazaev, A. V. (2024). "The Rostroconch Family Bransoniidae from the Early Permian Shakhtau Reef Massif (Mollusca, Southern Cis-Urals)". Paleontological Journal. 57 (1 supplement): S65 –S82. doi:10.1134/S0031030123700028.
^Mazaev, A. V. (2024). "Taxonomical Diversity and Morphology of Rostroconch Shells of the Family Arceodomidae fam. nov. from the Early Permian Shakhtau Reef Massif (Mollusca; Southern Cis-Urals)". Paleontological Journal. 57 (10): 1104–1127. doi:10.1134/S0031030123100039.
^Sigwart, J. D.; Wyse Jackson, P. N.; Parkes, M. A. (2024). "A new chiton (Mollusca: Polyplacophora: Paleoloricata) from the Mississippian of Hook Head, Co. Wexford, Ireland". Irish Journal of Earth Sciences. 42 (1): 119–124. doi:10.1353/ijes.2024.a935023.
^Mazaev, A. V. (2024). "А New Species of the Genus Lekiskochiton (Mollusca, Polyplacophora) from the Lower Permian Reef Limestones of Shakhtau (Southern Cis-Urals)". Paleontological Journal. 58 (3): 264–274. doi:10.1134/S003103012470014X.
^Mazaev, A. V. (2024). "New Species of the Genus Ochmazochiton (Mollusca, Polyplacophora) from the Lower Permian Reef Limestones of Shakhtau (Southern Cis-Urals)". Paleontological Journal. 58 (4): 406–414. doi:10.1134/S003103012460032X.
^Pratt, B. R.; Hopkins, G. J.; Hopkins, R. J. (2024). "Bellerophontid molluscs in the Grimsby Formation (Llandovery, lower Silurian), Hamilton, Ontario, Canada) and their paleoecological and taphonomic implications". Canadian Journal of Earth Sciences. 61 (8): 833–842. doi:10.1139/cjes-2023-0146. hdl:10388/15969.
^Mazaev, A. V.; Biakov, A. S. (2024). "Pseudoconocardium licharewi Zavodowsky, 1960, the latest representative of the extinct class Rostroconchia (Mollusca)". Palaeoworld. doi:10.1016/j.palwor.2024.11.008.
^Wang, Z.; Davies, N. S.; Liu, A. G.; Minter, N. J.; Rahman, I. A. (2024). "Identifying signatures of the earliest benthic bulldozers in emergent subaerial conditions during the colonization of land by animals". Proceedings of the Royal Society B: Biological Sciences. 291 (2034). 20241629. doi:10.1098/rspb.2024.1629. PMC 11708782. PMID39500375.
^Roopnarine, P. D.; Goodwin, D. H. (2024). "The geometry of conchiferan shell evolution: origins of coiling and bivalved morphologies". Journal of Molluscan Studies. 90 (4). eyae031. doi:10.1093/mollus/eyae031.
^Amano, K. (2024). "Speciation, extinction and survival of molluscan species in the marginal sea –Plio-Pleistocene Omma-Manganji fauna in the Japan Sea borderland–". Bulletin of the Mizunami Fossil Museum. 51 (1): 75–109. doi:10.50897/bmfm.51.1_75.
^Antoine, P.-O.; Wieringa, L. N.; Adnet, S.; Aguilera, O.; Bodin, S. C.; Cairns, S.; Conejeros-Vargas, C. A.; Cornée, J.-J.; Ežerinskis, Ž.; Fietzke, J.; Gribenski, N. O.; Grouard, S.; Hendy, A.; Hoorn, C.; Joannes-Boyau, R.; Langer, M. R.; Luque, J.; Marivaux, L.; Moissette, P.; Nooren, K.; Quillévéré, F.; Šapolaitė, J.; Sciumbata, M.; Valla, P. G.; Witteveen, N. H.; Casanova, A.; Clavier, S.; Bidgrain, P.; Gallay, M.; Rhoné, M.; Heuret, A. (2024). "A Late Pleistocene coastal ecosystem in French Guiana was hyperdiverse relative to today". Proceedings of the National Academy of Sciences of the United States of America. 121 (14). e2311597121. Bibcode:2024PNAS..12111597A. doi:10.1073/pnas.2311597121. PMC10998618. PMID38527199.