2018 in paleomammalogy

List of years in paleomammalogy
In paleontology
2015
2016
2017
2018
2019
2020
2021
In paleobotany
2015
2016
2017
2018
2019
2020
2021
In arthropod paleontology
2015
2016
2017
2018
2019
2020
2021
In paleoentomology
2015
2016
2017
2018
2019
2020
2021
In paleoichthyology
2015
2016
2017
2018
2019
2020
2021
In paleomalacology
2015
2016
2017
2018
2019
2020
2021
In reptile paleontology
2015
2016
2017
2018
2019
2020
2021
In archosaur paleontology
2015
2016
2017
2018
2019
2020
2021

This paleomammalogy list records new fossil mammal taxa that were described during the year 2018, as well as notes other significant paleomammalogy discoveries and events which occurred during that year.

Mammals in general

  • A study on the morphological diversity of vertebral regions in non-mammalian synapsids, and on its implication for elucidating the evolution of anatomically distinct regions of the mammalian spines, is published by Jones et al. (2018).[1]
  • A study on the evolution of the mammalian jaw is published by Lautenschlager et al. (2018), who find no evidence for a concurrent reduction in jaw-joint stress and increase in bite force in key non-mammaliaform taxa in the cynodont–mammaliaform transition.[2]
  • A study on the structure and origin of the braincase sidewalls of monotremes, multituberculates and therians, based on data from extant and fossil mammals and non-mammalian cynodonts, is published by Crompton et al. (2018).[3]
  • Vertebrate burrows, interpreted as most likely constructed by mammals, are described from the Salt Wash Member of the Upper Jurassic Morrison Formation (Utah, United States) by Raisanen & Hasiotis (2018), who name new ichnotaxa Daimonelix martini and Fractisemita henrii (the latter potentially representing the burrows of a social mammal).[4]
  • A study on diversification dynamics of the three major mammalian clades (multituberculates, metatherians and eutherians) in North America across the Cretaceous/Palaeogene boundary is published by Pires et al. (2018).[5]
  • A study on changes in mammalian faunal composition and structure during the earliest Paleogene biotic recovery, based on data from four localities in the Hell Creek Formation and Tullock Member of the Fort Union Formation (Montana, United States), is published by Smith et al. (2018).[6]
  • A high-resolution age model for mammalian turnover between the To2 and To3 substages of the Torrejonian across the San Juan Basin is presented by Leslie et al. (2018).[7]
  • A study on the mammalian extinction selectivity, continental body size distributions, and taxonomic diversity over five time periods spanning the past 125,000 years is published by Smith et al. (2018), who report evidence indicating that larger species of mammals were at greater risk of extinction following the global expansion of hominins over the late Quaternary, and that the degree of size-selectivity of mammalian extinctions in this period was unprecedented in the past 65 million years of mammalian evolution.[8]
  • A study on the relationship between extinctions of insular endemic mammal species in the Late Pleistocene and Holocene and their body mass, the size of the island and the first human arrival to the archipelago is published by Kouvari & van der Geer (2018).[9]
  • A study on the relationship between diversification rates and climatic niche evolution in mammals is published by Castro-Insua et al. (2018).[10]
  • A study on the dietary isotopic signatures recorded in tissues of herbivorous mammals, focusing on extant and fossil sloths, and evaluating the hypothesis that a single isotope enrichment pattern holds for all herbivorous mammals, is published by Tejada-Lara et al. (2018).[11]
  • A study on the temporal changes in the spatial differentiation of mammal faunas in China during the Cenozoic, and on the timing of the emergence of the modern spatially structured mammal faunas in China, is published by He et al. (2018).[12]
  • A study on the impact of discoveries of fossil mammals that preserve the ancestral or near-ancestral morphologies on resolution of differences between morphological and molecular estimates of mammal phylogeny is published by Beck & Baillie (2018).[13]

Metatherians

  • A study on the changes of the global diversity of metatherians through time based on a new dataset of metatherian fossil occurrences is published by Bennett et al. (2018).[14]
  • Description of new dentary fossils referable to Eodelphis browni, and a study on the evolution of adaptations to durophagy in stagodontids, is published online by Brannick & Wilson (2018).[15]
  • A study on the morphological diversity of sparassodonts and its implications for the structure of the terrestrial carnivore guild from the middle Cenozoic of South America is published by Croft et al. (2018).[16]
  • Description of a partial skull of Allqokirus australis from the Paleocene Santa Lucía Formation (Bolivia) and a study on the phylogenetic relationships of this species is published by de Muizon et al. (2018), who name a new metatherian superorder Pucadelphyda.[17]
  • A study on the age of thylacine and Tasmanian devil fossils from the mainland Australia and their implications for estimating the time of extinction in mainland Australia for both species is published by White et al. (2018).[18]
  • A study on the phylogeography and demographic history of the thylacine during the late Pleistocene and Holocene is published by White, Mitchell & Austin (2018).[19]
  • A study on the phylogeography and demographic history of the Tasmanian devil across southern Australia over the last ≈30,000 years, based on genomes from 202 devils representing the extinct mainland and the extant Tasmanian populations, is published by Brüniche–Olsen et al. (2018).[20]
  • A study on the phylogenetic relationships of Palaeopotorous priscus is published by den Boer & Kear (2018), who interpret this taxon as a probable non-macropodoid macropodiform marsupial.[21]
  • Revision of the taxonomic status of fossil kangaroo relatives attributed to the genera Ganawamaya and Nambaroo is published by Butler et al. (2018), who also describe new fossil material of Ganawamaya couperi (formerly assigned to the genus Nambaroo), Ganawamaya acris and G. aediculis.[22]
  • A study on evolution of kangaroos during the last 25 million years, based on data from fossil teeth, is published by Couzens & Prideaux (2018).[23]
  • Description of hitherto missing elements in the skeleton of Thylacoleo carnifex and a study on the anatomy and biomechanics of the postcranial skeleton of this species is published by Wells & Camens (2018).[24]
Name Novelty Status Authors Age Unit Location Notes Images

Australogale[25]

Gen. et sp. nov

In press

Engelman, Anaya & Croft

Miocene (Serravallian)

Honda Group

 Bolivia

A member of Sparassodonta. Genus includes new species A. leptognathus. Announced in 2018; the final version of the article naming it is scheduled to be published in 2020.

Austropediomys[26]

Gen. et sp. nov

Valid

Carneiro, Oliveira & Goin

Itaboraian

Itaboraí Formation

 Brazil

A member of Marsupialiformes belonging to the order Archimetatheria and the superfamily Pediomyiodea. The type species is A. marshalli.

Bergqvistherium[27]

Gen. et sp. nov

Valid

Carneiro

Itaboraian

Itaboraí Formation

 Brazil

A member of Didelphimorphia belonging to the family Protodidelphidae. The type species is B. primigenia.

Chlorocyon[28]

Gen. et sp. nov

Valid

Engelman et al.

Late Eocene (Mustersan)

Abanico Formation

 Chile

A member of Sparassodonta belonging to the group Borhyaenoidea. The type species is C. phantasma.

Coloradolops[29]

Gen. et sp. nov

Valid

Chornogubsky et al.

Middle Eocene

Quebrada de Los Colorados Formation

 Argentina

A member of Polydolopimorphia belonging to the superfamily Bonapartherioidea and to the family Prepidolopidae. Genus includes new species C. cardonensis.

Fumodelphodon[30]

Gen. et sp. nov

Valid

Cohen

Late Cretaceous (Turonian)

Straight Cliffs Formation

 United States
( Utah)

A member of Stagodontidae. Genus includes new species F. pulveris.

Galatiadelphys[31]

Gen. et sp. nov

Valid

Métais et al.

Late middle Eocene

Uzunçarşıdere Formation

 Turkey

A member of the family Herpetotheriidae. The type species is G. minor.

Herpetotherium tabrumi[32]

Sp. nov

Valid

Korth

Late Paleogene (Chadronian)

 United States
( Montana
 Nebraska
 North Dakota)

Hoodootherium[30]

Gen. et sp. nov

Valid

Cohen

Late Cretaceous (Turonian)

Straight Cliffs Formation

 United States
( Utah)

A member of Stagodontidae. Genus includes new species H. praeceps.

Miminipossum[33]

Gen. et sp. nov

Valid

Archer et al.

Miocene

Riversleigh World Heritage Area
Wipajiri Formation

 Australia

A member of Phalangerida belonging to the new family Miminipossumidae. The type species is M. notioplanetes.

Orhaniyeia[31]

Gen. et sp. nov

Valid

Métais et al.

Late middle Eocene

Uzunçarşıdere Formation

 Turkey

A relative of Anatoliadelphys. The type species is O. nauta.

Perameles papillon[34]

Sp. nov

Valid

Travouillon & Phillips

Holocene

Nullarbor Plain

 Australia

A long-nosed bandicoot.

Pujatodon[35]

Gen. et sp. nov

In press

Goin et al.

Eocene (Ypresian)

La Meseta Formation

Antarctica
(Seymour Island)

Probably a member of Polydolopimorphia. Genus includes new species P. ektopos. Announced in 2018; the final version of the article naming it is scheduled to be published in 2020.

Rhizophascolonus ngangaba[36]

Sp. nov

Valid

Brewer et al.

Miocene

Riversleigh site

 Australia

A wombat.

Varalphadon janetae[37]

Sp. nov

Valid

Carneiro

Late Cretaceous (late Cenomanian to early Coniacian)

Naturita Formation
Straight Cliffs Formation

 United States
( Utah)

Possibly a member of Sparassodonta.

Eutherians

  • A study on the causes of the increase of body size in aquatic mammals, based on data on the body masses of living and fossil mammals, is published by Gearty, McClain & Payne (2018).[38]
  • A study on large mammal burrows from the Upper Miocene Cerro Azul Formation (Argentina), aiming to infer their likely producers and to interpret the taphonomic processes involved in the preservation of the burrow casts, is published by Cardonatto & Melchor (2018).[39]
  • A study on the diet and habitat of the Hemphillian equids Calippus hondurensis, Dinohippus mexicanus and Protohippus gidleyi, the gomphothere Gomphotherium hondurensis, and the llama Hemiauchenia vera from San Gerardo de Limoncito (Costa Rica) is published by Pérez-Crespo et al. (2018).[40]
  • A study on the evolution and interconnectedness of the mammal faunas living in the Old World savannas in the Neogene is published by Kaya et al. (2018).[41]
  • A study on the changes of the species richness of mammals from the Iberian Peninsula between 15 and 2 million years ago, and on the modulating role of different factors influencing that species richness, is published by Cantalapiedra, Domingo & Domingo (2018).[42]
  • Systematic revision of the Miocene mammalian faunas of the Republic of Macedonia, known from fossils stored in the Macedonian Museum of Natural History, Skopje, is published by Spassov et al. (2018).[43]
  • A study on the paleomagnetic chronology of the fossil-bearing strata and on the age of the late Miocene mammal fossils from the Xining basin (Tibetan Plateau, China) is published by Hen et al. (2018).[44]
  • Faith (2018) evaluates the aridity index, a widely used technique for reconstructing local paleoclimate and water deficits from oxygen isotope composition of fossil mammal teeth, arguing that in some taxa altered drinking behavior (influencing oxygen isotope composition of teeth) might have been caused by dietary change rather than water deficits.[45][46][47]
  • A revision of the mammal fauna from the Miocene site of Bukwa (Uganda) and a study on the age of this fauna is published by Cote et al. (2018), who interpret their finding as indicating that a significant faunal turnover may have occurred in East Africa between 20 and 19 million years ago.[48]
  • A study on changes of the species- and genus-level diversity of large mammals in the Omo-Turkana Basin (eastern Africa) in the Pliocene and Pleistocene is published by Du & Alemseged (2018).[49]
  • The primary description and analysis of the so-called GD A faunal assemblage from the Gondolin Cave (South Africa) is published by Adams (2018).[50]
  • A study on the diet of large mammals from the Pleistocene sediments at Olduvai Gorge (Tanzania), as indicated by tooth wear and stable isotope data from fossil teeth, is published by Uno et al. (2018).[51]
  • A study on the diet of the most abundant ungulate taxa from the Oldowan site HWK EE (Olduvai Gorge, Tanzania), as indicated by tooth wear and stable isotope analyses, is published by Rivals et al. (2018).[52]
  • Description of new mammal and fish remains from the Olduvai Gorge site, comparing the mammal assemblage from this site to the present mammal community of Serengeti, and a study on their implications for reconstructing the paleoecology of this site at ~1.7–1.4 million years ago, is published by Bibi et al. (2018).[53]
  • A study on the distance of seed dispersal by extant and extinct mammalian frugivores and on the impact of the extinction of Pleistocene megafauna on seed dispersal is published by Pires et al. (2018).[54]
  • A study on the diet and habitat of ungulates from the Middle Pleistocene site of Fontana Ranuccio (Italy) as indicated by their tooth wear is published by Strani et al. (2018).[55]
  • A study on the response of large ungulates to the palaeoenvironmental changes that occurred at the passage between the Gelasian and Calabrian in the Italian Peninsula, based on the dental wear patterns and hypsodonty of the ungulates from the fossil assemblage of Olivola (Aulla, Italy), is published by Strani et al. (2018).[56]
  • A study on the ungulate and carnivoran carrying capacity of the late Early and early Middle Pleistocene ecosystems of Europe is published by Rodríguez & Mateos (2018).[57]
  • A study on the changes of vegetation in the temperate zone of Asia during an interval containing the Mid-Pleistocene Transition, ≈1.2–0.7 million years ago, as indicated by pollen data from a drilling core from the North China Plain, as well as on their effect on the large mammal fauna is published by Xinying et al. (2018).[58]
  • A study evaluating how the mammoth steppe ecosystem with its expected low vegetation productivity managed to support a high diversity and density of large mammalian herbivores during the Last Glacial Maximum is published by Zhu et al. (2018).[59]
  • A study modeling spatial and temporal patterns of habitat suitability for 24 megafauna species and Homo sapiens in the Late Pleistocene in Eurasia is published by Carotenuto et al. (2018), who state that extinct herbivorous megafauna species were consistently rare within habitat patches optimal for humans.[60]
  • A study on eastern African herbivore communities spanning the past 7 million years, aiming to test the hypothesis that tool-bearing, meat-eating hominins contributed to the demise of megaherbivores prior to the emergence of Homo sapiens, is published by Faith et al. (2018).[61]
  • A study on the age of the Pleistocene Linyi Fauna, and on its implications for establishing the chronological sequencing of the mammalian faunas on the Chinese Loess Plateau, is published by Qiu et al. (2018).[62]
  • Studies on the structure of mammal communities from the Paleolithic sites in the Anui River Basin and the Charysh River Basin are published by Agadjanian & Shunkov (2018).[63][64]
  • A study on the morphology of the skulls of extant and extinct elephants and hippos, evaluating the hypothesis that the skulls of extinct island dwarf members of these groups were pedomorphic, is published by van der Geer et al. (2018).[65]
  • The first evidence of bears scavenging on horses in the South American fossil record is reported from the Pleistocene deposits of the Gruta do Urso cave (Brazil) by Avilla et al. (2018).[66]
  • A study on the population dynamics of North American humans and large mammals preceding megafaunal extinctions at the end of the Pleistocene, and on their implications for inferring the causes of extinction of large mammals in North America at the end of the Pleistocene, is published by Broughton & Weitzel (2018).[67]
  • A study on a hybrid offspring of the grey seal and ringed seal born in 1929 in Stockholm zoo, and on its implications for paleontological research, is published by Savriama et al. (2018), who evaluate whether fossil specimens with morphology intermediate between two taxa could potentially be hybrids, and estimate the overall hybridization potential in mammal evolution, including human ancestry.[68]

Xenarthrans

  • A study on the relationship between humerus shape and the modes of exploring substrate among extant and fossil members of Pilosa is published by de Oliveira & Santos (2018).[69]
  • A study on the species distribution of 15 fossil xenarthrans from the late Pleistocene of South America is published by Varela et al. (2018).[70]
  • A study on the microwear patterns in the teeth of the Oligocene sloths Orophodon hapaloides and Octodontotherium grande, as well its implications for inferring the diet of these taxa, is published by Kalthoff & Green (2018).[71]
  • A study on the anatomy of the ear region in Glossotherium robustum and on the evolution of the inner ear anatomy in the xenarthrans is published by Boscaini et al. (2018).[72]
  • A study on the internal morphology of the skull of Glossotherium robustum is published online by Boscaini et al. (2018).[73]
  • A skull of a megatheriid sloth belonging to a member or a relative of the genus Proeremotherium is described from the Pliocene San Gregorio Formation (Venezuela) by Carlini et al. (2018).[74]
  • A study on the fusion of anterior thoracic vertebrae in Pleistocene ground sloths is published online by Tambusso et al. (2018).[75]
  • A study on the feet anatomy of the fossil sloths Megatherium and Eremotherium, as well as its implications for inferring the degree to which their feet were habitually inverted, is published by Toledo et al. (2018).[76]
  • New remains (skull and humeri) of Megathericulus patagonicus are described from the middle Miocene fossiliferous locality of Quebrada Honda (Bolivia) by Brandoni et al. (2018).[77]
  • New fossil remains of Megatherium filholi are described from the late Pleistocene sediments of Buenos Aires Province (Argentina) by Agnolin et al. (2018), who revalidate M. filholi as a distinct species.[78]
  • A study on the bone structure of the skull of Thalassocnus and on the evolution of bone mass increase in extinct aquatic sloths is published by Amson, Billet & de Muizon (2018).[79]
  • A study on the ontogenetic, intraspecific and interspecific variations in the anatomy of the occipital region of the skulls of members of the family Mylodontidae from the late Pleistocene of Argentina is published by Brambilla & Ibarra (2018).[80]
  • A study on the phylogenetic relationships of Mylodon darwinii, based on mitogenomic and nuclear data, is published by Delsuc et al. (2018).[81]
  • A study on the morphology and histology of glyptodont osteoderms from the Gruta do Urso cave (Brazil), representing the first juvenile specimen of Glyptotherium described from the Late Pleistocene of South America, is published by Luna et al. (2018).[82]
  • Taxonomic revision of glyptodonts from Uruguay belonging to the tribe Plohophorini is published by Toriño & Perea (2018).[83]
  • A study comparing the morphology of South American species of Glyptodon and Glyptotherium, in order to identify diagnostic differences and potential synapomorphies, is published by Zurita et al. (2018).[84]
  • A study on the anatomy of the hyoid apparatus of two glyptodontid specimens from Lujanian sediments of the Pampean Region (Argentina), assigned to the genus Panochthus, is published by Zamorano et al. (2018).[85]
  • First cases of parasitism by fleas and other cutaneous lesions on osteoderms, carapace and caudal tube fragments of large fossil cingulates, including Panochthus, Glyptotherium and Pachyarmatherium, are reported by de Lima & Porpino (2018).[86]
Name Novelty Status Authors Age Unit Location Notes Images

Neoglyptatelus uruguayensis[87]

Sp. nov

Valid

Fernicola et al.

Late Miocene

Camacho Formation

 Uruguay

A member of Cingulata.

Pattersonocnus[88]

Gen. et sp. nov

Valid

Rincón et al.

Late Miocene

Urumaco Formation

 Venezuela

A sloth belonging to the family Megalonychidae. The type species is P. diazgameroi.

Urumacocnus[88]

Gen. et sp. nov

Valid

Rincón et al.

Late Miocene

Urumaco Formation

 Venezuela

A sloth belonging to the family Megalonychidae. The type species is U. urbanii.

Xibalbaonyx microcaninus[89]

Sp. nov

Valid

Stinnesbeck, Frey & Stinnesbeck

Late Pleistocene

 Mexico

A ground sloth belonging to the family Megalonychidae.

Afrotherians

  • A study on the anatomy and phylogenetic relationships of the elephant shrew Chambius kasserinensis based on known and newly described fossil remains from the Eocene of Tunisia is published by Tabuce (2018).[90]
  • Description of the anatomy of middle and inner ears of the golden mole Namachloris arenatans from the Palaeogene of Namibia is published by Mason, Bennett & Pickford (2018).[91]
  • A revision of sirenian fossils and taxa from the Miocene Chesapeake Group (eastern United States) is published by Domning (2018).[92]
  • A method to estimate the body mass of extinct proboscideans on the basis of skull remains is presented by Jukar, Lyons & Uhen (2018).[93]
  • A study on the evolution of the cheek teeth displacement mechanism in elephantiform proboscideans is published by Sanders (2018).[94]
  • New fossil material of Choerolophodon corrugatus is described from the Dhok Pathan Formation (Pakistan) by Abbas et al. (2018).[95]
  • Phytoliths preserved in the dental calculus of specimens of Gomphotherium connexum and Gomphotherium steinheimense from the Miocene Halamagai Formation (northern Junggar Basin, China) are described by Wu et al. (2018), who interpret their findings as indicating that G. connexum was an obligate browser or a mixed feeder, while G.steinheimense may have had a more grass-dominated feeding preference, and was the earliest-known proboscidean with a predominantly grazing habit.[96]
  • A study on the diet and habitat of Notiomastodon platensis from Central Chile is published by González-Guarda et al. (2018).[97]
  • A study on the diet of the Columbian mammoths, pygmy mammoths and American mastodons as indicated by tooth wear is published by Smith & Desantis (2018).[98]
  • Late Pleistocene proboscidean fossils, including fossils of Stegodon orientalis and the Asian elephant (Elephas maximus), are described from the Yangjiawan caves (Jiangxi, China) by Tong et al. (2018).[99]
  • A study evaluating the validity of the taxon Archidiskodon meridionalis gromovi is published by Baygusheva & Titov (2018).[100]
  • A study on members of the genus Archidiskodon from the Lower Pleistocene sediments of the South of Western Siberia (Kuznetsk Basin), and their implications for early evolution of the ArchidiskodonMammuthus lineage, is published by Foronova (2018).[101]
  • Redescription of the southern mammoth remains from the Pleistocene site of Huéscar-1 (Baza basin, Granada, Spain), and a study on the implications of these remains for inferring the time and mode of the replacement of the southern mammoth by the steppe mammoth by the end of the Early Pleistocene, is published by Ros-Montoya et al. (2018).[102]
  • A study on permafrost-preserved Siberian woolly mammoths, aiming to measure testosterone in the hair samples of the studied specimens, is published by Koren et al. (2018).[103]
  • A study on the age and origin of the Berelyokh mammoth site in northeast Siberia is published by Lozhkin & Anderson (2018);[104] the study is subsequently criticized by Pitulko et al. (2019).[105][106]
  • A study on changes in woolly mammoth range in Europe during MIS 2 is published by Nadachowski et al. (2018).[107]
  • A study on the life conditions of woolly mammoths from the Upper Paleolithic site Kraków Spadzista (Poland) is published by Haynes, Klimowicz & Wojtal (2018).[108]
  • A study on changes in the specific niche of the woolly mammoth in the central East European plains shortly before their extinction, as indicated by data on the carbon and nitrogen isotope composition of mammoth bones from the Epigravettian site of Mezhyrich and from contemporaneous and nearby sites of Buzhanka 2, Eliseevichi and Yudinovo, is published by Drucker et al. (2018).[109]
  • An overview of parasite finds in woolly mammoth specimens is published by Serdyuk & Maschenko (2018).[110]
  • A study on the importance of mammoths as a source of dietary omega-3 fatty acids in Paleolithic societies, as indicated by data on fats from several frozen mammoths found in the permafrost of Siberia, and on the cultural significance of mammoths for hominins, is published by Guil-Guerrero et al. (2018).[111]
  • A study on the evolutionary history of the family Elephantidae based on 14 genomes from extant and fossil elephantids and from the American mastodon is published by Palkopoulou et al. (2018).[112]
Name Novelty Status Authors Age Unit Location Notes Images

Elephas (Palaeoloxodon) cephallonicus[113]

Sp. nov

Disputed

Theodorou et al.

Pleistocene

 Greece

A dwarf endemic middle sized elephant from the island of Cephalonia. Athanassiou, van der Geer & Lyras (2019) considered this species to be a junior synonym of the straight-tusked elephant (Palaeoloxodon antiquus).[114]

Promicrogale[115]

Gen. et sp. nov

Valid

Pickford

Early Miocene

Elisabeth Bay Formation

 Namibia

A tenrec. The type species is P. namibiensis.

Sobrarbesiren[116]

Gen. et sp. nov

Valid

Díaz-Berenguer et al.

Eocene (Lutetian)

Sobrarbe Formation

 Spain

A sirenian of uncertain phylogenetic placement. The type species is S. cardieli.

Stylolophus[117]

Gen. et sp. nov

Valid

Gheerbrant, Schmitt & Kocsis

Eocene (Ypresian)

Ouled Abdoun Basin

 Morocco

An early member of Embrithopoda. The type species is S. minor.

Bats

  • A review of the distribution of sesamoids in extant bats, as well as in Eocene bats Onychonycteris finneyi and Icaronycteris index, is published by Amador et al. (2018).[118]
  • A study on the phylogeny of extant and fossil short-faced bats (leaf-nosed bats belonging to the subfamily Stenodermatinae and the subtribe Stenodermatina) and on the ancestral distributions of the group, evaluating whether this group was more likely to originate on Antilles or on the American mainland, is published by Tavares et al. (2018).[119]
  • An exceptionally preserved adult specimen of Egyptian fruit bat, morphologically more similar to Egyptian than to East African or Middle Eastern populations, is described from the early Holocene deposits in Hoq Cave (Socotra Island, Yemen) by Van Damme et al. (2018).[120]
Name Novelty Status Authors Age Unit Location Notes Images

Anatolianycteris[121]

Gen. et sp. nov

Valid

Jones et al.

Eocene (late Lutetian)

Uzunçarşidere Formation

 Turkey

A member of the family Palaeochiropterygidae. The type species is A. insularis.

Mops kerio[122]

Sp. nov

Valid

Gunnell & Manthi

Pliocene

Kanapoi site

 Kenya

A species of Mops. Announced in 2018; the final version of the article naming it was published in 2020.

Mops turkwellensis[122]

Sp. nov

Valid

Gunnell & Manthi

Pliocene

Kanapoi site

 Kenya

A species of Mops. Announced in 2018; the final version of the article naming it was published in 2020.

Pteronotus trevorjacksoni[123]

Sp. nov

Valid

Van Den Hoek Ostende, Van Oijen & Donovan

Late Pleistocene

 Jamaica

A species of Pteronotus.

Rousettus pattersoni[122]

Sp. nov

Valid

Gunnell & Manthi

Pliocene

Kanapoi site

 Kenya

A species of Rousettus. Announced in 2018; the final version of the article naming it was published in 2020.

Saccolaimus kenyensis[122]

Sp. nov

Valid

Gunnell & Manthi

Pliocene

Kanapoi site

 Kenya

A species of Saccolaimus. Announced in 2018; the final version of the article naming it was published in 2020.

Turkanycteris[122]

Gen. et sp. nov

Valid

Gunnell & Manthi

Pliocene

Kanapoi site

 Kenya

A very large fruit bat, larger than all extant fruit bats other than some species of Pteropus and Hypsignathus. Genus includes new species T. harrisi. Announced in 2018; the final version of the article naming it was published in 2020.

Vulcanops[124]

Gen. et sp. nov

Valid

Hand et al.

Early Miocene

Bannockburn Formation

 New Zealand

A New Zealand short-tailed bat. The type species is V. jennyworthyae.

Odd-toed ungulates

  • A study on the temporal and spatial distribution of Paleogene odd-toed ungulate species from the Erlian Basin (China) is published by Bai et al. (2018).[125]
  • Tooth anomalies in two juvenile specimens of the Miocene rhinoceros Prosantorhinus germanicus are described by Böhmer & Rössner (2018), who discuss probable causes of these anomalies.[126]
  • A jaw of Stephanorhinus kirchbergensis is described from the Mus Khaya locality on the Yana River in the Sakha Republic (Russia) by Shpansky & Boeskorov (2018), representing the northernmost occurrence of this species; the authors also interpret Coelodonta jacuticus as the junior synonym of the woolly rhinoceros (Coelodonta antiquitatis).[127]
  • A study on the morphology of the postcranial skeleton of Teleolophus, based on new remains from the Eocene of China, is published by Bai, Wang & Meng (2018).[128]
  • A study on the diet of the Miocene rhinoceros Diceros gansuensis, as indicated by data from starch granules found in dental calculus of a specimen from the Miocene Linxia Basin (Gansu, China), is published by Chen et al. (2018).[129]
  • New fossil material of Elasmotherium peii is described from the Lower Pleistocene of the Shanshenmiaozui site (Nihewan Basin, China) by Tong, Chen & Zhang (2018).[130]
  • A study on the digit reduction in the evolution of horses is published by Solounias et al. (2018).[131]
  • A study testing for the presence of broad-scale habitat partitioning in fossil horses of North America is published by Parker, McHorse & Pierce (2018).[132]
  • A revised diagnosis and a description of the anatomy of the Miocene hipparionine species Sivalhippus ptychodus and S. platyodus from China is published by Sun et al. (2018).[133]
  • A study on the ontogeny (mineralization, eruption, and replacement patterns) of postcanine teeth of members of the genus Hipparion from Cerro de los Batallones (Spain) is published by Domingo et al. (2018).[134]
  • A study on the bone growth pattern of different-sized hipparionins as indicated by bone histology, and on its implications for inferring the possible mechanisms and causes underlying trends in size reduction of European hipparions in the late Miocene, is published by Orlandi-Oliveras et al. (2018).[135]
  • Review of fossils of members of the family Equidae from the Pleistocene site of lac Karâr (Algeria) is published by Sam (2018).[136]
  • A study on the diet and habitat of Pleistocene members of the genera Equus and Hippidion from southern United States, Mexico and South America, as indicated by carbon and oxygen isotopic data, is published by Pérez-Crespo et al. (2018).[137]
  • A study evaluating how the geographic distribution of horses changed through time in the Late Pleistocene and Holocene, based on paleontological and archeological horse finds across the whole of Eurasia evaluated in association with paleoclimatic and paleoenvironmental reconstructions for the Late Quaternary, is published by Leonardi et al. (2018).[138]
Name Novelty Status Authors Age Unit Location Notes Images

Ardynia ordosensis[139]

Sp. nov

Valid

Bai, Wang & Zhang

Late Eocene

 China

A member of the family Hyracodontidae.

Chilotherium licenti[140]

Sp. nov

Valid

Sun, Li & Deng

Late Miocene

 China

Danjiangia lambdodon[141]

Sp. nov

Bai, Wang & Meng

Earliest Eocene

Hengyang Basin

 China

A member of the family Brontotheriidae.

Epimanteoceras mae[142]

Sp. nov

Valid

Li

Eocene (Irdinmanhan)

Üqbulak Formation

 China

A member of the family Brontotheriidae.

Erihippus[141]

Gen. et sp. nov

Bai, Wang & Meng

Earliest Eocene

Lingcha Formation

 China

A member of the family Equidae. The type species is E. tingae.

Forstercooperia ulanshirehensis[143]

Sp. nov

Valid

Wang et al.

Eocene

Irdin Manha Formation
Ulan Shireh Formation

 China

Hispanotherium wushanense[144]

Sp. nov

Valid

Sun et al.

Miocene

Wushan Subbasin

 China

Maobrontops[145]

Gen. et sp. nov

Valid

Averianov et al.

Late Eocene

Youganwo Formation

 China

A member of the family Brontotheriidae. The type species is M. paganus.

Sellamynodon[146]

Gen. et comb. nov

Valid

Tissier et al.

Late Eocene or Early Oligocene

 Romania

A member of the family Amynodontidae. The type species is "Cadurcodon" zimborensis Codrea & Şuraru (1989).

Shanxihippus[147]

Gen. et comb. nov

Valid

Bernor et al.

Late Miocene

 China

A member of the family Equidae belonging to the tribe Hipparionini. The type species is "Hipparion" dermatorhinum Sefve (1927).

Even-toed ungulates

  • A study evaluating whether tooth measurements of the kind typically used in the systematics of Merycoidodontoidea can diagnose between related, similarly sized even-toed ungulates is published by Emery-Wetherell & Davis (2018).[148]
  • Description of the fossil material of the camel species Camelus thomasi from the Pleistocene locality of Tighennif (Algeria) and a study on the phylogenetic relationships of this species is published by Martini & Geraads (2018).[149]
  • A study on the diet of extinct peccaries in Florida from the late Miocene throughout the Pleistocene, as indicated by tooth microwear and stable carbon isotopes, is published by Bradham et al. (2018).[150]
  • Fossils of the peccaries Mylohyus elmorei and Prosthennops serus are described from the Gray Fossil Site (Tennessee, United States) by Doughty et al. (2018), representing the first occurrence of these species from the Appalachians reported so far.[151]
  • Partial skull of a suid assigned to the genus Metridiochoerus is described from the Malapa Fossil Site (South Africa) by Lazagabaster et al. (2018).[152]
  • Description of a new mandible of Sus strozzii from the Early Pleistocene of Pantalla (central Italy), as well as a study on the phylogenetic relationships of living and fossil Eurasian and African members of Suinae, is published by Cherin et al. (2018).[153]
  • A study on the evolution of hypsodonty in ruminants as indicated by phylogeny of ruminants, estimated ancestral ruminant diets and habitats, and fossil record of grasslands is published by Toljagić et al. (2018).[154]
  • A study comparing the exclusivity and magnitude of changes in diversification rates during the evolution of ruminants and other lineages of placental mammals is published by Rossi, Mello & Schrago (2018).[155]
  • Fossils of the chevrotain Dorcatherium crassum, including a skull and teeth remains, are described from the Miocene (Langhian) of the Faluns Auger quarry (Contres, France) by Mennecart et al. (2018).[156]
  • Croitor, Sanz & Daura (2018) report the findings from a morphological and demographic analysis of remains of the endemic deer Haploidoceros mediterraneus from the Late Pleistocene of the Cova del Rinoceront (Spain).[157]
  • A study on the feeding habits of Morenelaphus as indicated by tooth enamel microwear is published by Rotti et al. (2018).[158]
  • A study on the dietary plasticity of specimens of Eucladoceros ctenoides from eight middle and late Villafranchian localities in Europe, as indicated by tooth microwear, is published by Berlioz et al. (2018).[159]
  • Antler remains of the wapiti (Cervus canadensis) are described from the Late Paleolithic site of Climăuți II (Moldova) by Croitor & Obada (2018), confirming the presence of wapiti in the Late Pleistocene of western Eurasia.[160]
  • Pfeiffer-Deml (2018) raises fossil fallow deer Dama dama geiselana to the rank of a separate species Dama geiselana, and compares its antler and skeletal characteristics with other fossil and recent fallow deers.[161]
  • A study on the diet of the Irish elk (Megaloceros giganteus), as indicated by data from masticated plant remains preserved in deep folds of a molar found in sandy deposits of the North Sea, is published by van Geel et al. (2018).[162]
  • Description of new fossils of Propalaeoryx stromeri from the Miocene of Namibia, redescription of the skull anatomy of Propalaeoryx and a study on the phylogenetic relationships of this taxon is published by Sánchez et al. (2018).[163]
  • A study on the dietary preferences of extant and fossil members of the family Giraffidae as indicated by teeth microwear is published by Merceron, Colyn & Geraads (2018).[164]
  • Giraffe tracks are described from the Pleistocene Waenhuiskrans Formation (Bredasdorp Group, South Africa) by Helm et al. (2018), increasing known historical range of giraffes.[165]
  • A study on the diet and habitat of Leptomeryx from the Eocene (Uintan) Yolomécatl Formation (Mexico) as indicated by tooth enamel carbon and oxygen isotopic relationships will be published by Ferrusquía-Villafranca et al. (2018).[166]
  • A study on the dietary preferences of members of the tribe Tragelaphini from the Plio-Pleistocene Shungura Formation (Lower Omo Valley, Ethiopia) as indicated by their tooth wear is published by Blondel et al. (2018).[167]
  • Description of the late Miocene gazelle fossils from the Qingyang area (Gansu, China), and a review of the taxonomy of gazelle species known from this area, is published by Li et al. (2018).[168]
  • A study on the dietary ecology of Antidorcas bondi (an extinct relative of the springbok) is published by Ecker & Lee-Thorp (2018).[169]
  • A study on the impact of climate changes on the evolution of body size of members of the genus Bison based on the data from extant and fossil bisons is published by Martin, Mead & Barboza (2018).[170]
  • A study on the dietary preference and habitat use of three Mexican samples of Bison antiquus, as indicated by tooth wear, is published by Díaz-Sibaja et al. (2018).[171]
  • A study on mandibular shape variation in extant bovids with different feeding preferences, and on its implications for inferring dietary adaptations of fossil bovids from the Upper Laetolil Beds and Upper Ndolanya Beds of Laetoli (Tanzania) and the degree of vegetation cover at Laetoli during early hominin occupation, is published by Forrest, Plummer & Raaum (2018).[172]
  • A study evaluating when the island of Sulawesi (Indonesia) gained its modern shape and size, and determining the timings of diversification of the three largest endemic mammals on the island (the babirusa, the Celebes warty pig and the anoa) is published by Frantz et al. (2018).[173]
Name Novelty Status Authors Age Unit Location Notes Images

Aumelasia sudrei[174]

Sp. nov

Valid

Erfurt in Godinot et al.

Eocene

 France

A member of the family Dichobunidae.

Bachitherium thraciensis[175]

Sp. nov

Valid

Mennecart et al.

Eocene (latest Bartonian or early Priabonian)

 Bulgaria
 Serbia?[176]

An early ruminant belonging to the group Tragulina and the family Bachitheriidae.

Candiacervus devosi[177]

Sp. nov

Valid

Van der Geer

Late Pleistocene

 Greece

An Old World deer.

Candiacervus listeri[177]

Sp. nov

Valid

Van der Geer

Late Pleistocene

 Greece

An Old World deer.

Candiacervus reumeri[177]

Sp. nov

Valid

Van der Geer

Late Pleistocene

 Greece

An Old World deer.

"Dorcatherium" namaquensis[178]

Sp. nov

Valid

Sánchez et al.

Middle Miocene

 Namibia

A chevrotain.

Lophiobunodon hookeri[174]

Sp. nov

Valid

Godinot et al.

Eocene

 France

A member of the family Choeropotamidae.

Orycterochoerus[179]

Gen. et sp. nov

Valid

Pickford & Morales

Early Miocene

 Spain

A member of Suoidea belonging to the family Doliochoeridae. The type species is O. alferezi.

Paenanthracotherium[180]

Gen. et sp. et comb. nov

Valid

Scherler, Lihoreau & Becker

Oligocene

 France
 Germany
 Pakistan
 Romania
  Switzerland

An anthracotheriine hippopotamoid. The type species is P. bergeri; genus also includes "Anthracotherium" hippoideum Rütimeyer (1857) and "Brachyodus" strategus Forster-Cooper (1913).

Parmularius maasaicus[53]

Sp. nov

Valid

Bibi et al.

Pleistocene

Olduvai Gorge site

 Tanzania

A member of the family Bovidae belonging to the tribe Alcelaphini.

Protodichobune hellmundi[174]

Sp. nov

Valid

Erfurt in Godinot et al.

Eocene

 France

A member of the family Dichobunidae.

Rucervus gigans[181]

Sp. nov

Croitor

Early Pleistocene

Platanochori Formation

 Greece

A species of Rucervus.

Rucervus radulescui[181]

Sp. nov

Croitor

Early Pleistocene

Platanochori Formation

 Greece
 Moldova
 Romania
 Russia

A species of Rucervus.

Stryfnotherium[182]

Gen. et sp. nov

Valid

Kostopoulos & Soubise

Late Miocene

 Greece

A member of the family Bovidae. Genus includes new species S. exophthalmon.

Cetaceans

  • A study assessing the lumbar mobility in archaeocetes is published by Bebej & Smith (2018).[183]
  • A study on the anatomy of the auditory region of the skull of protocetids as indicated by fossils from the Eocene of Togo is published by Mourlam & Orliac (2018).[184]
  • A study on the teeth complexity across fossil and living cetaceans, attempting to identify a trend toward dental simplicity through the Neogene, is published by Peredo, Peredo & Pyenson (2018).[185]
  • A quantitative analysis and a study on the evolution of cranial telescoping (sliding of facial bones over each other, in much the same way as long sections of telescope slide over shorter sections) in toothed whales is published by Churchill et al. (2018).[186]
  • A study on the morphology of the bony labyrinth in extant and fossil toothed whales is published by Costeur et al. (2018), who interpret their findings as indicating that the bony labyrinth provides key information both about phylogeny and habitat preferences of members of this group of cetaceans.[187]
  • New fossils of members of the genus Agorophius are described from the Oligocene Chandler Bridge Formation (South Carolina, United States) by Boessenecker & Geisler (2018), providing new information on ontogenetic variation and sensory anatomy in Agorophius.[188]
  • A study on the life history and ecology of Neogene members of Physeteroidea known from the Lee Creek Mine (North Carolina, United States) based on the examination of their teeth is published by Gilbert, Ivany & Uhen (2018).[189]
  • Description of postcranial remains of the stem-beaked whale Messapicetus gregarius from the Miocene (Tortonian) of Peru is published by Ramassamy et al. (2018), who also propose a reconstruction of the musculature of the neck and forelimb of the species.[190]
  • An almost complete skull of Llanocetus denticrenatus is described from the Eocene La Meseta Formation (Antarctica) by Fordyce & Marx (2018), who also study the phylogenetic relationships and likely feeding strategy of this species, as well as its implications for inferring the origin of baleen and gigantism in baleen whales.[191]
  • A study on the morphology of the membranous labyrinth in extinct and extant baleen whales and their ancestors, focusing on Late Miocene baleen whales from Adygea (Russia), is published by Tarasenko et al. (2018).[192]
  • An ontogenetically young specimen of Herpetocetus is described from the lower part of the Horokaoshirarika Formation (Hokkaido, Japan) by Tanaka & Watanabe (2018), representing the only record of Miocene Herpetocetinae from the western Pacific reported so far.[193]
  • Partial periotic bone of a member of the genus Caperea is described from the latest Miocene of southern Australia by Marx et al. (2018), representing the oldest record of this genus reported so far.[194]
  • A study on the anatomy of cochleae of extant and extinct cetaceans, the relationships of cochlear shape and the frequency ranges heard by cetaceans, and their implications for determining the occurrence of very low frequency and infrasonic hearing in fossil baleen whales is published by Ritsche et al. (2018).[195]
  • Oxygen-isotope analysis of a whale barnacle specimen collected from early Pleistocene deposits of Apulia (Italy) is published by Collareta et al. (2018), who interpret their findings as indicating that the barnacle lived on a cetacean that seasonally migrated towards high-latitude areas outside the Mediterranean.[196]
Name Novelty Status Authors Age Unit Location Notes Images

Aondelphis[197]

Gen. et sp. nov

Valid

Viglino et al.

Early Miocene

Gaimán Formation

 Argentina

A member of Platanistoidea. The type species is A. talen.

Ciuciulea[198]

Gen. et sp. nov

Valid

Gol'din

Middle Miocene

 Moldova

A member of the family Cetotheriidae. The type species is C. davidi.

Ediscetus[199]

Gen. et sp. nov

Valid

Albright, Sanders & Geisler

Oligocene (Rupelian)

Ashley Formation

 United States
( South Carolina)

An early toothed whale, slightly outside the odontocete crown group. Genus includes new species E. osbornei.

Eschrichtius akishimaensis[200]

Sp. nov

Valid

Kimura, Hasegawa & Kohno

Early Pleistocene

 Japan

A relative of the gray whale.

Haborodelphis[201]

Gen. et sp. nov

Valid

Ichishima et al.

Early Pliocene

 Japan

A member of the family Monodontidae. Genus includes new species H. japonicus.

Khoikhoicetus kergueleni[202]

Sp. nov

Valid

Lambert et al.

Uncertain, possibly Miocene

Seafloor 370 km SWW to Kerguelen Islands

A beaked whale belonging to the subfamily Hyperoodontinae.

Kwanzacetus[203]

Gen. et sp. nov

Valid

Lambert et al.

Late Miocene

 Angola

A member of the family Iniidae. The type species is K. khoisani.

Macrosqualodelphis[204]

Gen. et sp. nov

Valid

Bianucci et al.

Miocene (Burdigalian)

Chilcatay Formation

 Peru

A member of the family Squalodelphinidae. The type species is M. ukupachai.

Maiabalaena[205]

Gen. et sp. nov

Valid

Peredo et al.

Oligocene (Rupelian)

Alsea Formation

 United States

An early baleen whale. The type species is M. nesbittae.

Salishicetus[206]

Gen. et sp. nov

Valid

Peredo & Pyenson

Late Oligocene

Lincoln Creek Formation

 United States
( Washington)

A member of the family Aetiocetidae. The type species is S. meadi.

Taikicetus[207]

Gen. et sp. nov

Valid

Tanaka, Ando & Sawamura

Middle Miocene

Hikatagawa Formation

 Japan

A cetotheriid-like baleen whale. The type species is T. inouei.

Tlaxcallicetus[208]

Gen. et sp. nov

Valid

Hernández Cisneros

Late Oligocene

El Cien Formation

 Mexico

A member of Chaeomysticeti of uncertain phylogenetic placement. The type species is T. guaycurae.

Toipahautea[209]

Gen. et sp. nov

Valid

Tsai & Fordyce

Oligocene (Chattian)

Kokoamu Greensand

 New Zealand

An archaic baleen whale. The type species is T. waitaki.

Wimahl[210]

Gen. et sp. nov

Valid

Peredo, Uhen & Nelson

Early Miocene

Astoria Formation

 United States
( Washington)

A member of the family Kentriodontidae. Genus includes new species W. chinookensis.

Carnivorans

  • A systematic examination of members of the family Canidae from the Hemphillian Mehrten Formation (California, United States) is published by Balisi et al. (2018).[211]
  • A study evaluating whether body size and the occurrence of skull and teeth traits related to the dietary specialization were correlated with species duration and locality coverage in North American canids over 40 million years of their evolution is published by Balisi, Casey & Van Valkenburgh (2018).[212]
  • A study on the teeth microwear in extant gray wolves and coyotes, and its implications for dietary studies of extant and fossil canids, is published by Tanis, DeSantis & Terry (2018).[213]
  • Description of a sample of coprolites from the Upper Miocene Mehrten Formation (California, United States), likely produced by Borophagus parvus, and a study on their implications for inferring the diet of this species, is published by Wang et al. (2018).[214]
  • Revision of the taxonomy and relative age of the Javanese canid fossils will be published by van der Geer, Lyras & Volmer (2018).[215]
  • A study on the phylogenetic relationships of extant and fossil members of the subfamily Caninae is published by Zrzavý et al. (2018).[216]
  • Description of new fossils of members of the genus Nyctereutes from the Pliocene site of Layna (Spain), and a study on their implications for inferring the evolutionary history of Nyctereutes in Eurasia, is published by Bartolini Lucenti, Rook & Morales (2018).[217]
  • Fossil footprint of a jackal-like predator is described from the Sorbas Member of the Sorbas Basin (Spain) by McCann et al. (2018).[218]
  • Revision of fossils attributed to the species Canis variabilis and a study on the morphotype variability of the Pleistocene members of the genus Canis is published by Jiangzuo et al. (2018), who considered C. variabilis to be a subspecies of Canis mosbachensis.[219]
  • A study on the morphological diversity of the limb bones of fossil and modern North American gray wolves is published by Tomiya & Meachen (2018).[220]
  • A study on the morphological and morphometric variability of late Pleistocene gray wolves from Avetrana (Italy) in comparison to other populations from northern and southern Italy, as well as from other localities in Europe, is published by Mecozzi & Bartolini Lucenti (2018).[221]
  • A study on the evolutionary history of the domestic dogs living in the Americas before the arrival of European colonists, based on data from sequenced mitochondrial and nuclear genomes from ancient North American and Siberian dogs from time frames spanning ≈9000 years, is published by Ní Leathlobhair et al. (2018).[222]
  • A study on the mitochondrial DNA sequences of ancient dogs from 37 archaeological sites across Eurasia (from the Upper Paleolithic to the Bronze Age), testing the hypothesis that dogs associated with Near Eastern farmers were brought into Europe alongside other domestic animals during the Neolithic, is published by Ollivier et al. (2018).[223]
  • A study on the age of dingo bones from Madura Cave on the Nullarbor Plain (Australia), and its implications for inferring the likely rate of dingo spread throughout Australia from their point of arrival, is published by Balme, O'Connor & Fallon (2018).[224]
  • The complete mitochondrial genome of a ~22,000-year-old giant panda specimen from the Cizhutuo Cave (Leye County, Guangxi, China) is sequenced by Ko et al. (2018).[225]
  • A study on the age of the fossil remains of short-faced bears (Arctodus simus) and brown bears (Ursus arctos) from Pellucidar Cave (Vancouver Island, Canada) is published by Steffen & Fulton (2018).[226]
  • A study on the living conditions of Pleistocene bears (belonging to the species Ursus ingressus) from Jaskinia Niedźwiedzia (Bear Cave) in Kletno (Poland) as indicated by the frequency of Harris lines in their bones is published by Nowakowski (2018).[227]
  • A study on the diet of the cave bears from four MIS 3 sites in the Carpathian Mountains, based on isotopic data, is published by Robu et al. (2018).[228]
  • Multifold coverage genomic data from four Late Pleistocene cave bears is presented by Barlow et al. (2018), who report that cave bears hybridized with brown bears during the Pleistocene, and that segments of cave bear DNA still persist in the genomes of living brown bears.[229]
  • A revision of bear fossils from Zhoukoudian is published by Jiangzuo et al. (2018), who unambiguously confirm the presence of Ursus deningeri in Loc. 1 of Zhoukoudian.[230]
  • A study on the bone histology of cave bear femora, and on its implications for inferring growth and life history variables of cave bears, is published by Veitschegger et al. (2018).[231]
  • A study on the morphometric variability of the mandibles of cave and brown bears and their ancestors (Ursus minimus and Ursus etruscus) is published by Baryshnikov, Puzachenko & Baryshnikova (2018).[232]
  • A study on the dynamics of lineage diversification and diversity of body mass and length in the evolution of musteloid carnivorans based on data from extant and fossil taxa is published by Law, Slater & Mehta (2018).[233]
  • A study estimating the body mass of the fossil procyonids Cyonasua, Parahyaenodon and Tetraprothomo is published by Tarquini et al. (2018).[234]
  • Fossils of members of the genera Nasua and Procyon are described from the Marplatan stage of the El Breal of Orocual locality (Venezuela) by Ruiz-Ramoni, Rincón & Montellano-Ballesteros (2018), representing the oldest record of these procyonids in South America reported so far.[235]
  • The first well-preserved skull of the fossil mustelid Leptarctus oregonensis is described from the Miocene Mascall Formation (Oregon, United States) by Calede, Kehl & Davis (2018).[236]
  • A study on joints morphology and mobility in the hind limb of the Miocene mustelid species Semantor macrurus is published by Lavrov, Tarasenko & Vlasenko (2018).[237]
  • Description of new fossil material of Iberictis azanzae and I. buloti from the early Miocene of Spain, providing new information on the anatomy of Iberictis, and a study on the phylogenetic relationships of this genus is published online by Valenciano et al. (2018).[238]
  • Femur of a member of the genus Enhydra (a relative of the sea otter) is described from the middle Pleistocene Merced Formation (California, United States) by Boessenecker (2018), representing the oldest record of Enhydra in the Pacific with robust geochronologic age control reported so far.[239]
  • New specimens of members of the genus Enaliarctos are described from the Miocene Skooner Gulch Formation (California, United States), Oligocene Yaquina Formation (Oregon, United States) and Miocene Astoria Formation (Oregon, United States) by Poust & Boessenecker (2018), extending the geographic and temporal range of the genus.[240]
  • A study on the morphology of the forelimbs of Enaliarctos mealsi and extant phocine earless seals, on the use of forelimbs to secure and tear prey by extant phocine seals, and on its implications for inferring the feeding behaviour of early pinnipeds, is published by Hocking et al. (2018).[241]
  • Description of the anatomy of the first known mandible of the earless seal Devinophoca claytoni from the Miocene of Slovakia is published by Rahmat & Koretsky (2018).[242]
  • A humerus of an earless seal belonging to the subfamily Monachinae is described from the Pliocene (most likely Piacenzian) Lillo Formation (Belgium) by Dewaele, Lambert & Louwye (2018), representing the first known monachine specimen from the latest early to late Pliocene of the North Sea.[243]
  • A fossil specimen assigned to the genus Homiphoca is described from the Pliocene of Spain by Rahmat et al. (2018), representing the first European record of this genus.[244]
  • A study on the mandibular morphology of the odobenid Neotherium mirum, as well as on the affinities of mandibles from the Miocene Sharktooth Hill Bonebed in California representing other pinnipeds, is published by Velez-Juarbe (2018).[245]
  • New specimen of Ontocetus emmonsi is described from the Austin Sand Pit (Ridgeville, South Carolina, United States) by Boessenecker, Boessenecker & Geisler (2018), representing the youngest record of O. emmonsi from the Atlantic coastal plain reported so far.[246]
  • Evidence of Pleistocene hyenas preying upon small rodents is reported from the Bois Roche cave site (France) by Williams et al. (2018).[247]
  • A study on the external brain morphology of a juvenile cave hyena from the Jasovská Cave (Slovakia) is published by Petrovič et al. (2018).[248]
  • Cougar skull is described from the Pleistocene (Ensenadan) of Argentina by Chimento & Dondas (2018), representing the first unequivocal record of the cougar prior to late Pleistocene times in South America.[249]
  • A study on the shape and the dimensions of the bony vestibular system in the inner ear of the cheetah, comparing it with the vestibular system in other extant felids and in the extinct giant cheetah (Acinonyx pardinensis) and Proailurus lemanensis, and on the evolution of the vestibular system of the cheetah is published by Grohé, Lee & Flynn (2018).[250]
  • Description of a partial skull of a large felid from the late Villafranchian site of Monte Argentario (Italy), formerly assigned to the species Panthera gombaszoegensis, is published by Cherin et al. (2018), who refer this specimen (and some other Italian materials previously referred to P. gombaszoegensis) to the species Acinonyx pardinensis.[251]
  • Description of fossils of at least four adult cave lions (Panthera spelaea) from Medvedia Cave in the Západné Tatra Mountains (Slovakia) and a study on the range and social behavior of members of this taxon is published by Sabol, Gullár & Horvát (2018).[252]
  • A study on bones belonging to at least 11 individuals of fossil lion from the Imanai Cave in the Southern Urals, representing one of the largest Eurasian burial sites of fossil lions, is published by Gimranov et al. (2018).[253]
  • An exceptionally large skull of a lion, comparable to large specimens of the American lion in terms of skull length and substantially larger than known skulls of extant lions, is described from the Pleistocene of Kenya by Manthi et al. (2018).[254]
  • A study on the historical biogeography of the leopard (Panthera pardus), based on data from mitogenome sequences from historical samples spanning the entire modern leopard distribution, as well as from Late Pleistocene remains from Caucasus and Central Europe, is published by Paijmans et al. (2018).[255]
  • The northernmost fossil record of the jaguar from Argentina is reported from the late Pleistocene-early Holocene Río Bermejo Formation (Formosa Province) by Rodriguez et al. (2018).[256]
  • A study on the evolution of the morphological diversity of the mandibles of saber-toothed cats, as well as on the speciation and extinction rates in the evolution of saber-toothed cats, is published by Piras et al. (2018).[257]
  • A study on the evolution of upper canine length in the felid lineages leading to the fossil saber-toothed cats and extant clouded leopard is published by Harano & Kutsukake (2018).[258]
  • A canine of Megantereon whitei is reported from Trlica Cave in Montenegro by Vislobokova (2018), reflecting the first penetration of this African species into the Balkans.[259]
  • An almost complete skull of Smilodon fatalis will be described from the Pleistocene Sopas Formation (Uruguay) by Manzuetti et al. (2018), representing the first known record of the species from the eastern part of South America.[260]
  • A study on the skull stiffness and flexibility in Smilodon fatalis and Homotherium serum, and on their implications for inferring the killing behavior of these cats, is published by Figueirido et al. (2018).[261]
Name Novelty Status Authors Age Unit Location Notes Images

Allodesmus demerei[262]

Sp. nov

Valid

Boessenecker & Churchill

Miocene (Tortonian)

Montesano Formation

 United States
( Washington)

Allodesmus uraiporensis[263]

Sp. nov

Valid

Tonomori et al.

Middle Miocene

Okoppezawa Formation

 Japan

Auroraphoca[264]

Gen. et sp. nov

Valid

Dewaele et al.

Pliocene (Zanclean)

Yorktown Formation

 United States
( North Carolina)

An earless seal belonging to the subfamily Monachinae. The type species is A. atlantica.

Canis lupus cristaldii[265]

Subsp. nov

Valid

Angelici & Rossi

Holocene

 Italy

A wolf subspecies.

Civettictis braini[266]

Sp. nov

Valid

Fourvel

Pliocene-Pleistocene transition

Kromdraai fossil site

 South Africa

A relative of the African civet.

Enhydrictis praegalictoides[267]

Sp. nov

Valid

Rook et al.

Pleistocene

 Italy

A member of the family Mustelidae belonging to the subfamily Ictonychinae and to the tribe Galictini.

Frisiphoca[268]

Gen. et comb. nov

Valid

Dewaele, Lambert & Louwye

Late Miocene

Probably Diest Formation

 Belgium

An earless seal belonging to the subfamily Phocinae. The type species is "Monotherium" aberratum Van Beneden (1876); genus also includes "Monotherium" affine Van Beneden (1876).

Gulo sudorus[269]

Sp. nov

Valid

Samuels, Bredehoeft & Wallace

Early Pliocene (earliest Blancan)

Gray Fossil Site

 United States
( Tennessee)

A relative of the wolverine.

Katifelis[270]

Gen. et sp. nov

Valid

Adrian, Werdelin & Grossman

Early Miocene

Lothidok Formation

 Kenya

A member of the family Felidae. The type species is K. nightingalei.

Kichechia savagei[270]

Sp. nov

Valid

Adrian, Werdelin & Grossman

Early Miocene

Lothidok Formation

 Kenya

A member of the family Viverridae belonging to the subfamily Paradoxurinae.

Martellictis[271]

Gen. et comb. nov

Valid

Bartolini Lucenti

Pleistocene

 Austria
 France
 Italy
 Netherlands
 Slovakia

A member of the family Mustelidae. Genus includes "Mustela" ardea Gervais (1848–1852).

Meles magnus[272]

Sp. nov

Valid

Jiangzuo et al.

Early Pleistocene

 China

A badger, a species of Meles.

Nanodobenus[273]

Gen. et sp. nov

Valid

Velez-Juarbe & Salinas-Márquez

Miocene

Tortugas Formation

 Mexico

A relative of the walrus. The type species is N. arandai.

Nasua mastodonta[274]

Sp. nov

Valid

Emmert & Short

Blancan

 United States
( Florida)

A species of Nasua.

Noriphoca[268]

Gen. et comb. nov

Valid

Dewaele, Lambert & Louwye

Late Oligocene or early Miocene

Probably Bolognano Formation

 Italy

An earless seal belonging to the subfamily Monachinae. The type species is "Monotherium" gaudini (Guiscardi, 1870).

Pannonictis baroniensis[267]

Sp. nov

Valid

Rook et al.

Pleistocene

 Italy

A member of the family Mustelidae belonging to the subfamily Ictonychinae and to the tribe Galictini.

Panthera balamoides[275]

Sp. nov

Valid

Stinnesbeck et al.

Pleistocene

 Mexico

A species of Panthera. Announced in 2018; the final version of the article naming it was published in 2020.

Procyon gipsoni[274]

Sp. nov

Valid

Emmert & Short

Blancan

 United States
( Florida)

A species of Procyon.

Procyon megalokolos[274]

Sp. nov

Valid

Emmert & Short

Blancan

 United States
( Florida)

A species of Procyon.

Tchadailurus[276]

Gen. et sp. nov

Valid

De Bonis et al.

Late Miocene

 Chad

A member of the family Felidae belonging to the subfamily Machairodontinae. The type species is T. adei.

Titanotaria[277]

Gen. et sp. nov

Valid

Magallanes et al.

Late Miocene

Capistrano Formation

 United States
( California)

A relative of the walrus. The type species is T. orangensis.

Virginiaphoca[264]

Gen. et sp. nov

Valid

Dewaele et al.

Late Miocene or Pliocene (Zanclean)

Eastover Formation or Yorktown Formation

 United States
( Virginia)

An earless seal belonging to the subfamily Monachinae. The type species is V. magurai.

Rodents

Name Novelty Status Authors Age Unit Location Notes Images

Aepyocricetus[297]

Gen. et sp. nov

Valid

Li et al.

Pliocene

Zanda Basin

 China

A hamster. Genus includes new species A. liuae.

Allosminthus gobiensis[298]

Sp. nov

Valid

Li

Paleogene

 China

A member of the family Dipodidae.

Alormys[299]

Gen. et sp. nov

Valid

Louys et al.

Holocene

 Indonesia

A member of the family Muridae belonging to the subfamily Murinae. The type species is A. aplini.

Bustrania[300]

Gen. et sp. nov

Valid

De Bruijn et al.

Eocene

 Serbia

A member of Muroidea belonging to the subfamily Pappocricetodontinae. The type species is B. dissimile.

Cardiatherium calingastaense[301]

Sp. nov

Valid

Cerdeño et al.

Late Miocene

Las Flores Formation

 Argentina

A relative of the capybara. Announced in 2018; the final version of the article naming it was published in 2019.

Cholamys[302]

Gen. et sp. nov

Valid

Pérez et al.

Deseadan

Salla beds

 Bolivia

A New World porcupine. Genus includes new species C. tetralophodonta.

Douglassciurus oaxacaensis[303]

Sp. nov

Valid

Ferrusquia-Villafranca et al.

Eocene

Yolomécatl Formation

 Mexico

A sciurid rodent.

Eoincamys parvus[304]

Sp. nov

Valid

Boivin et al.

Early Oligocene

Pozo Formation

 Peru

Possibly a member of Chinchilloidea.

Eoincamys valverdei[304]

Sp. nov

Valid

Boivin et al.

Early Oligocene

Pozo Formation

 Peru

Possibly a member of Chinchilloidea.

Eumyarion gordesensis[305]

Sp. nov

Valid

Pelaez-Campomanes et al.

Early Miocene

 Turkey

A member of the family Muridae.

Euroxenomys nanus[306]

Sp. nov

Valid

Mörs & Tomida

Early Miocene

Nakamura Formation

 Japan

A member of the family Castoridae.

Gregorymys veloxikua[307]

Sp. nov

Valid

Jiménez-Hidalgo, Guerrero-Arenas & Smith

Eocene (Chadronian)

 Mexico

A member of Geomyidae.

Karydomys strati[308]

Sp. nov

Valid

López-Antoñanzas et al.

Miocene

Keramia Formation

 Greece

A species of Karydomys.

Kichkasteiromys[304]

Gen. et sp. nov

Valid

Boivin et al.

Early Oligocene

Pozo Formation

 Peru

A member of Erethizontoidea. The type species is K. raimondii.

Kraglievichimys[309]

Gen. et comb. nov

Valid

Barbière, Ortiz & Pardiñas

Pliocene

Monte Hermoso Formation

 Argentina

A sigmodontine rodent; a new genus for "Auliscomys" formosus Reig (1978).

Lapazomys[302]

Gen. et sp. nov

Valid

Pérez et al.

Deseadan

Salla beds

 Bolivia

A caviomorph rodent related to the group Octodontoidea. Genus includes new species L. hartenbergeri.

Leggadina irvini[310]

Sp. nov

Valid

Cramb, Price & Hocknull

Age uncertain, likely Middle or Late Pleistocene

 Australia

A species of Leggadina.

Leggadina webbi[310]

Sp. nov

Valid

Cramb, Price & Hocknull

Middle Pleistocene

 Australia

A species of Leggadina.

Mayomys[304]

Gen. et sp. nov

Valid

Boivin et al.

Early Oligocene

Pozo Formation

 Peru

A member of Octodontoidea of uncertain phylogenetic placement. The type species is M. confluens.

Microparamys solis[311]

Sp. nov

Valid

Dawson & Constenius

Middle Eocene

Kishenehn Formation

 United States
( Montana)

Migraveramus lavocati[302]

Sp. nov

Valid

Pérez et al.

Deseadan

Salla beds

 Bolivia

A caviomorph rodent related to the group Octodontoidea.

Mogilia[312]

Gen. et 2 sp. nov

Valid

Wessels et al.

Eocene and early Oligocene

 Serbia

A member of the family Muridae belonging to the subfamily Melissiodontinae. The type species is M. miloshi; genus also includes M. lautus.

Namaparamys[313]

Gen. et sp. nov

Valid

Mein & Pickford

Eocene (Ypresian/Lutetian)

Black Crow Limestone

 Namibia

Possibly a relative of Reithroparamys. The type species is N. inexpectatus.

Nannocricetus qiui[297]

Sp. nov

Valid

Li et al.

Pliocene

Zanda Basin

 China

A hamster.

Neocavia pampeana[314]

Sp. nov

Valid

Madozzo-Jaén et al.

Huayquerian

Cerro Azul Formation

 Argentina

A member of Caviinae.

Orcemys[315]

Gen. et sp. nov

Valid

Martin et al.

Early Pleistocene

 Spain

A member of Arvicolidae. Genus includes new species O. giberti.

Paracricetodon gracilis[316]

Sp. nov

Valid

Van de Weerd et al.

Early Oligocene

 Serbia

A member of the family Muridae belonging to the subfamily Paracricetodontinae.

Paracricetodon stojanovici[316]

Sp. nov

Valid

Van de Weerd et al.

Late Eocene and early Oligocene

 Serbia

A member of the family Muridae belonging to the subfamily Paracricetodontinae.

Pararhizomys huaxiaensis[317]

Sp. nov

Valid

Wang

Late Miocene

Linxia Basin

 China

A member of the family Spalacidae belonging to the subfamily Tachyoryctoidinae and the tribe Pararhizomyini.

Pararhizomys longensis[317]

Sp. nov

Valid

Wang

Late Miocene

Linxia Basin

 China

A member of the family Spalacidae belonging to the subfamily Tachyoryctoidinae and the tribe Pararhizomyini.

Phenacomys europaeus[318]

Sp. nov

Valid

Van Kolfschoten, Tesakov & Bell

Early Pleistocene (Gelasian)

 Netherlands

A heather vole, the first known European member of the genus Phenacomys.

Protosteiromys pattersoni[302]

Sp. nov

Valid

Pérez et al.

Deseadan

Salla beds

 Bolivia

A New World porcupine.

Protozetamys[303]

Gen. et sp. nov

Valid

Ferrusquia-Villafranca et al.

Late middle Eocene

Yolomécatl Formation

 Mexico

A relative of Zetamys, assigned to the new family Zetamyidae; a possible member of Caviomorpha. Genus includes new species P. mixtecus.

Pseudorhizomys[317]

Gen. et 4 sp. nov

Valid

Wang

Late Miocene

Linxia Basin

 China

A member of the family Spalacidae belonging to the subfamily Tachyoryctoidinae and the tribe Pararhizomyini. Genus includes new species P. indigenus, P. gansuensis, P. planus and P. pristinus.

Sallamys woodi[302]

Sp. nov

Valid

Pérez et al.

Deseadan

Salla beds

 Bolivia

A caviomorph rodent related to the group Octodontoidea.

Selvamys[304]

Gen. et sp. nov

Valid

Boivin et al.

Early Oligocene

Pozo Formation

 Peru

A member of Octodontoidea of uncertain phylogenetic placement. The type species is S. paulus.

Shapajamys[304]

Gen. et sp. nov

Valid

Boivin et al.

Early Oligocene

Pozo Formation

 Peru

A member of Erethizontoidea. The type species is S. labocensis.

Simplomys hugi[319]

Sp. nov

Valid

Prieto et al.

Miocene

  Switzerland

A dormouse.

Tarapotomys[304]

Gen. et 2 sp. nov

Valid

Boivin et al.

Early Oligocene

Pozo Formation

 Peru

A member of Caviomorpha of uncertain phylogenetic placement. The type species is T. subandinus; genus also includes T. mayoensis.

Tsaukhaebmys[320]

Gen. et sp. nov

Valid

Pickford

Eocene (Ypresian/Lutetian)

Black Crow Limestone

 Namibia

A member of the family Zegdoumyidae. The type species is T. calcareus.

Tufamys[321]

Gen. et sp. nov

Valid

Pickford

Eocene (Bartonian, possibly Priabonian)

Eocliff Limestone

 Namibia

A member of Hystricognathi belonging to the new family Tufamyidae. The type species is T. woodi.

Vasseuromys tectus[322]

Sp. nov

Valid

Sinitsa & Nesin

Late Miocene

 Ukraine

A dormouse belonging to the subfamily Leithiinae.

Witenia europea[300]

Sp. nov

Valid

De Bruijn et al.

Eocene

 Serbia

A member of Muroidea belonging to the subfamily Pappocricetodontinae.

Primates

  • A study on the morphology of the nasolacrimal canal and duct in extant and Paleogene strepsirrhines and haplorhines, and on its implications for inferring the phylogenetic relationships of Paleogene primates, is published by Rossie et al. (2018).[323]
  • A study on the anatomy and phylogenetic relationships of Propotto leakeyi is published by Gunnell et al. (2018), who support George Simpson's original interpretation of this species as a strepsirrhine primate, and consider both P. leakeyi and Plesiopithecus teras to be relatives of the aye-aye.[324]
  • A study on reconstructing the jaw muscles and bite force of subfossil lemurs from Madagascar, as well as on their implications for inferring the diet of these lemurs, is published by Perry (2018).[325]
  • A study on the early evolution of North American adapids and omomyids, comparing reconstructed dietary niches of these primates and other animals from their guild to establish the nature of the competitive environment surrounding primate origins in North America, is published by Stroik & Schwartz (2018).[326]
  • Description of isolated phalanges from four early Eocene localities in Wyoming (United States), indicative of presence of grooming claws in five genera of early haplorhine primates (including Teilhardina), is published by Boyer et al. (2018).[327]
  • A study evaluating whether the locomotor behaviour of extant New World monkeys can be inferred from their talus morphology, and applying machine learning algorithms trained using both the biomechanical and morphometric data from the extant taxa to infer the possible locomotor behaviour of Miocene New World monkeys from Argentina, Chile, Peru, Colombia and Cuba, is published by Püschel et al. (2018).[328]
  • Partial mandible of Homunculus patagonicus from the early Miocene sediments in the Coyle river area (Santa Cruz Province, Argentina), providing new information on the morphology of the mandible and teeth of Homunculus, and two teeth of Mazzonicebus almendrae from Colhue-Huapi (Chubut Province, Argentina), providing the first evidence of the deciduous dentition of Mazzonicebus, are described by Novo, Tejedor & González Ruiz (2018).[329]
  • A study on the phylogenetic relationship of the Jamaican monkey (Xenothrix mcgregori), as indicated by ancient DNA data, is published by Woods et al. (2018).[330]
  • A tibia of a large-bodied arboreally adapted Old World monkey (a member or a relative of the genus Rhinocolobus) is described from the Australopithecus afarensis-bearing Upper Laetolil Beds (~3.7 Ma) of Laetoli (Tanzania) by Laird et al. (2018), who also study the implications of the specimen for inferring the paleoenvironment of the Upper Laetolil Beds.[331]
  • A skull of a large papionin monkey is described from the Lower Pleistocene site of Dafnero-3 (Greece) by Kostopoulos et al. (2018), who interpret the anatomy of this skull as indicating that the specimen could equally be ascribed to either the Eurasian genus Paradolichopithecus or to the East Asian Procynocephalus, and argue in favor of the synonymy of these genera.[332]
  • A study on the phylogenetic relationships of living and fossil African papionins is published by Pugh & Gilbert (2018).[333]
  • A study on the fossil members of the genus Papio from across Africa, focusing on their distinguishing features and distribution, is published by Gilbert et al. (2018).[334]
  • A study on the feeding ecology of Plio-Pleistocene members of the genera Papio and Theropithecus from the Shungura Formation (Ethiopia) is published by Martin et al. (2018).[335]
  • Three specimens of the Barbary macaque are described from the Pleistocene of the Netherlands by Reumer, Mol & Kahlke (2018).[336]
  • A study evaluating whether climatic and environmental changes were the main cause of extinction of Oreopithecus bambolii is published by DeMiguel & Rook (2018).[337]
  • A study on the body mass sexual dimorphism in Nacholapithecus kerioi is published by Kikuchi et al. (2018).[338]
  • Description of the anatomy of the forelimb long bones of the holotype specimen of Nacholapithecus kerioi is published by Takano et al. (2018).[339]
  • Fragment of the maxilla of a member of the genus Sivapithecus is described from the Miocene of the Tapar locality (Gujarat, India) by Bhandari et al. (2018), representing the first record of a hominoid from the Neogene of the Kutch Basin.[340]
  • A review of the paleontological, archeological, genetic and behavioral evidence of the impact of at least 70,000 years of human influence on orangutan distribution, abundance and ecology is published by Spehar et al. (2018).[341]
  • Description of tooth decay affecting the type specimen of Dryopithecus carinthiacus, and a study on its implications for inferring the diet of this specimen, is published by Fuss, Uhlig & Böhme (2018).[342]
  • A study on the phylogenetic relationships of Graecopithecus published by Benoit & Thackeray (2017), aiming to refute the hypothesis that Graecopithecus is a member of the hominin clade,[343] is criticized by Fuss et al. (2018).[344]
  • A study evaluating whether machine learning methods can accurately classify extant apes based on dental data, and using this classification method to explore the affinities between dentitions of Miocene hominoid fossils and living apes, is published by Monson, Armitage & Hlusko (2018).[345]
  • A study on the utility of enamel thickness, enamel-dentine junction shape and crown development for determining the taxonomic affiliation of isolated teeth of hominins and pongines from the Asian Pleistocene is published by Smith et al. (2018).[346]

General paleoanthropology

  • Estimations of body mass in Pliocene and Pleistocene hominins based on lower limb bones dimensions are presented by Ruff et al. (2018).[347]
  • A study on the evolution of the brain size in hominins is published by Du et al. (2018).[348]
  • A study on the evolution of the mandible shape in hominins, based on an analysis of the mandibular shape variation in a large sample of plesiadapiforms and primates, is published by Raia et al. (2018).[349]
  • A study on the cervical kinematics in early fossil hominins, based on an analysis of uncinate processes in the vertebrae of fossil hominins, Homo sapiens and extant nonhuman primates, is published by Meyer et al. (2018).[350]
  • A study on the intra-specific variation of patterns of metatarsal robusticity (a measure reflecting habitual stresses in long bones, and in particular, loads experienced over an animal's lifetime) in modern humans and extant African apes, and its implications for inferring whether the Olduvai Hominid 8 foot was biomechanically similar to the feet of modern humans, is published by Patel et al. (2018).[351]
  • A study on the bony shape variables in the metatarsals of extant anthropoid primates and fossil hominins, and on their importance to the evolution of terrestrial bipedalism in hominins, is published by Fernández et al. (2018).[352]
  • Domínguez-Rodrigo & Baquedano (2018) evaluate the ability of successful machine learning methods to compare and distinguish various types of bone surface modifications (trampling marks, crocodile bite marks and cut marks made with stone tools) in archaeofaunal assemblages.[353]
  • Taphonomic study on the ca. 1.84 million year old bovid fossils (preserving evidence of meat eating by early hominins) from Olduvai Gorge (Tanzania), evaluating whether hominins had early access to fleshed carcasses through hunting or active scavenging, or late access to largely defleshed carcasses through passive scavenging, is published by Parkinson (2018).[354]
  • The study published by Gierliński et al. (2017), reporting putative tetrapod footprints with hominin-like characteristics from the late Miocene of Crete (Greece),[355] is criticized by Meldrum & Sarmiento (2018).[356]
  • A study aiming to estimate body mass of Orrorin tugenensis and Ardipithecus ramidus is published by Grabowski, Hatala & Jungers (2018).[357]
  • A study comparing the calcar femorale of Orrorin tugenensis and other hominoids is published by Kuperavage et al. (2018), who interpret their findings as indicating that O. tugenensis was an early bipedal hominin.[358]
  • A study on the hydrological changes in the Limpopo River catchment and in sea surface temperature in the southwestern Indian Ocean for the past 2.14 million years, and on their implications for inferring the palaeoclimatic changes in southeastern Africa in this time period and their possible impact on the evolution of early hominins, is published by Caley et al. (2018).[359]
  • A study on the behavioral features which might have contributed to the demographic success of early hominids such as Australopithecus, based on comparison with macaques, is published by Meindl, Chaney & Lovejoy (2018).[360]
  • A study on the diversity dynamics of early hominins, evaluating whether the observed patterns of early hominin diversity can be better explained by sampling biases or genuine evolutionary processes, is published by Maxwell et al. (2018).[361]
  • A study on the pelvic morphology in Ardipithecus and Australopithecus, evaluating the hypothesis that early hominins retained ischial proportions and orientation that favored greater force production during climbing but limited their ability to hyperextend the hip and walk as economically as modern humans, is published by Kozma et al. (2018).[362]
  • Endocrania of two specimens of Australopithecus africanus from Sterkfontein Member 4 (South Africa) are virtually reconstructed by Beaudet et al. (2018).[363]
  • A study on the paleoenvironment and diet of Australopithecus africanus and Paranthropus robustus as indicated by tooth microwear is published by Peterson et al. (2018).[364]
  • A study on the relationship between root splay and overall morphology of first maxillary molars and jaw kinematics in South African Australopithecus africanus and Paranthropus robustus, and on its implications for inferring the dietary niches of these species, is published by Kupczik, Toro-Ibacache & Macho (2018).[365]
  • A study on the variation in trabecular bone structure of the femoral head in fossil hominins attributed to the species Australopithecus africanus, Paranthropus robustus and to the genus Homo, attempting to reconstruct hip joint loading conditions in these fossil hominins, is published by Ryan et al. (2018).[366]
  • A study on the habitats and diets of Paranthropus boisei and Homo rudolfensis from the Early Pleistocene of the Malawi Rift is published by Lüdecke et al. (2018).[367]
  • A study on the strontium isotope data derived from three studies of teeth of Paranthropus robustus, and on its implications for inferring habitat, mobility and growth of this species, is published by Sillen & Balter (2018).[368]
  • The skull of 'Mrs. Ples' (Sts 5 specimen of Australopithecus africanus) is interpreted as a skull of a small male rather than a large female individual by Tawane & Thackeray (2018).[369]
  • A study on the variation in the structure of trabecular bone and joint loading in the humeral head of extant hominoids, spider monkeys and Australopithecus africanus is published by Kivell et al. (2018), who interpret their findings as indicating that A. africanus may have still used its forelimbs for arboreal locomotion.[370]
  • Description of a nearly complete, 3.32-million-year-old foot of a juvenile Australopithecus afarensis from Dikika (Ethiopia) is published by DeSilva et al. (2018).[371]
  • A study on the possible date of the first appearance of Australopithecus sediba as indicated by the average hominin species' temporal range is published by Robinson et al. (2018).[372]
  • Studies on the anatomy of the skeleton of Australopithecus sediba are published by De Ruiter et al. (2018),[373] Williams et al. (2018),[374] Churchill et al. (2018),[375] Kivell et al. (2018),[376] Churchill et al. (2018),[377] DeSilva et al. (2018)[378] and Holliday et al. (2018).[379]
  • A digital animation of the proposed walking mechanics of Australopithecus sediba is presented by Zhang & DeSilva (2018).[380]
  • A study on the linear marks observed on the hominin fossil Stw53 from the Sterkfontein cave site (South Africa), evaluating whether these marks were cutmarks inflicted by stone tools or non-anthropic modifications, is published by Hanon, Péan & Prat (2018).[381]
  • New artifacts are described from the Swartkrans cave (South Africa) by Kuman et al. (2018), who confirm the affinity of the Swartkrans artifacts with the Oldowan industrial complex.[382]
  • Oldowan stone tools and associated hominin-modified fossil bones are reported from strata estimated to ≈2.4 and ≈1.9 Ma from two deposits at Ain Boucherit (Algeria) by Sahnouni et al. (2018).[383]
  • Pelvic remains of Homo naledi from the Dinaledi Chamber in the Rising Star Cave system (Cradle of Humankind, South Africa) are described by VanSickle et al. (2018).[384]
  • A study on the minimum number of individuals and on a demographic profile of the assemblage of Homo naledi individuals in the Dinaledi Chamber (Rising Star Cave system, South Africa) is published by Bolter et al. (2018).[385]
  • A study on the diet of Homo naledi as indicated by teeth wear textures is published by Ungar & Berger (2018).[386]
  • A study comparing tooth shape and size in Homo naledi and other South African Plio-Pleistocene hominins, as well as a study on the possible diet of Homo naledi, is published by Berthaume, Delezene & Kupczik (2018).[387]
  • A study on the endocast morphology of Homo naledi, comparing it with other hominoids and fossil hominins, is published by Holloway et al. (2018).[388]
  • A study on the phenetic affinities and taxonomic validity of Homo naledi as indicated by teeth morphology will be published by Irish et al. (2018).[389]
  • Three incudes of Homo naledi recovered from the Dinaledi Chamber in the Rising Star cave system are described by Elliott et al. (2018).[390]
  • Partial mandible of Homo naledi which was most likely affected by peripheral osteoma is reported by Odes et al. (2018).[391]
  • A study on evaluating whether deliberate disposal of corpses is the only likely explanation for large assemblages of fossil human bones from the Middle Pleistocene sites of Sima de los Huesos (Spain) and the Dinaledi Chamber (South Africa) is published by Egeland et al. (2018).[392]
  • A study on the phylogenetic relationships of the Pleistocene hominin specimen (a fragmented skullcap) from Kocabaş (Denizli Basin, Turkey) is published by Vialet et al. (2018).[393]
  • A study on the morphology and affinities of the hominin calvaria KNM-ER 42700 from Ileret, Kenya is published by Neubauer et al. (2018).[394]
  • A study on the frequency and location of hominin (likely Homo habilis) butchery marks and carnivore tooth marks on mammal bones from the HWK EE site (Olduvai Gorge, Tanzania), and on their implications for inferring carnivorous feeding behavior of the HWK EE hominins and the ecological interactions they had with carnivores, is published by Pante et al. (2018).[395]
  • A study estimating possible adult stature and body mass of the Homo erectus specimen KNM-WT 15000 ("Turkana Boy") is published by Cunningham et al. (2018).[396]
  • A study on the structure of the animal community known from the Okote Member of the Koobi Fora Formation at East Turkana (Kenya) as indicated by tracks and skeletal assemblages, and on the interactions of Homo erectus with environment and associated faunas from this site, is published by Roach et al. (2018).[397]
  • A study on the large cutting tools from four Acheulean sites at Koobi Fora dated to ~1.4 million years ago, investigating the behavioural patterns underpinning recorded artefact variability, is published by Presnyakova et al. (2018).[398]
  • A study on 1.07–0.99 million-year-old pelvic remains from Buia (Eritrea) is published by Hammond et al. (2018), who interpret their findings as indicating that the postcranial morphology of Homo erectus sensu lato was variable and, in some cases, nearly indistinguishable from modern human morphology, and that the shared last common ancestor of Late Pleistocene Homo species was unlikely to have an australopith-like pelvis.[399]
  • A study on the humeral rigidity and strength in members of the species Homo erectus known from Zhoukoudian (China), comparing it with the humeral rigidity and strength in the African members of the species, is published by Xing et al. (2018).[400]
  • A study on the morphology of teeth of Homo erectus from Zhoukoudian is published by Xing, Martinón-Torres & Bermúdez de Castro (2018).[401]
  • A study on the age of the archaeological layers from the Zhoukoudian Upper Cave, and on its implications for understanding Late Quaternary human evolution in eastern Asia, is published by Li et al. (2018).[402]
  • New magnetostratigraphic dating results for the Bailong Cave (China) sedimentary sequence containing hominin teeth assigned to the species Homo erectus are presented by Kong et al. (2018).[403]
  • An Early Pleistocene artefact sequence, containing 17 artefact layers that extend from approximately 1.26 million years ago to about 2.12 million years ago, is described from the Shangchen locality (Loess Plateau, China) by Zhu et al. (2018), indicating that hominins left Africa earlier than indicated by the evidence from Dmanisi.[404]
  • A study investigating how the hominin groups living in the Qinling Mountains range (China) responded to glacial–interglacial shifts from ~1.20 million years ago to ~0.05 million years ago is published by Sun et al. (2018).[405]
  • A study on the morphology and affinities of the Middle Pleistocene hominin mandible recovered from La Niche cave site of the Montmaurin karst system (France) is published by Vialet et al. (2018).[406]
  • Taphonomic signatures of the Aroeira 3 cranium, with a specific focus on cranial breakage, are described by Sanz et al. (2018), who attempt to approximate the cause of death of this individual.[407]
  • A study on strategies for thermoregulation in the absence of fire in conditions experienced by hominins in north-west Europe before 400,000 years ago is published by MacDonald (2018).[408]
  • Evidence for progressive aridification in East Africa since about 575,000 years before present, based on data from sediments from Lake Magadi (Kenya), is presented by Owen et al. (2018), who also evaluate the influence of the increasing Middle- to Late-Pleistocene aridification and environmental variability on the physical and cultural evolution of Homo sapiens in East Africa.[409]
  • A series of excavated Middle Stone Age sites from the Olorgesailie Basin (Kenya), dated as ≈320,000 years old, is presented by Brooks et al. (2018), who report evidence of hominins preparing cores and points, exploiting iron-rich rocks to obtain red pigment, and procuring stone tool materials from ≥25–50 km distance.[410]
  • A study on the environmental dynamics before and after the onset of the early Middle Stone Age in the Olorgesailie Basin (Kenya) is published by Potts et al. (2018).[411]
  • A study on the chronology of the Acheulean and early Middle Stone Age sedimentary deposits in the Olorgesailie Basin (Kenya) is published by Deino et al. (2018).[412]
  • A study on bone artefacts from Middle Stone Age layers at Sibudu Cave (South Africa), evaluating what kinds of animals were used to make bone tools, is published by Bradfield (2018).[413]
  • A study on the stone tools from the Acheulean site of Saffaqah near Dawadmi (Saudi Arabia), and their implications for inferring how hominins adapted to this region, is published by Shipton et al. (2018).[414]
  • A study on the stratigraphy, archaeology and chronology of the Saffaqah site, providing the first secure dates for this site, is published by Scerri et al. (2018).[415]
  • A study on the age of stone tools from the Attirampakkam site in India is published by Akhilesh et al. (2018), indicating the emergence of a Middle Paleolithic culture in India at 385 ± 64 thousand years ago.[416]
  • Stone tools associated with a skeleton of Rhinoceros philippinensis showing clear signs of butchery are described from a bone bed at Kalinga in the Cagayan Valley of northern Luzon (the Philippines), dated to between 777 and 631 thousand years ago, by Ingicco et al. (2018).[417]
  • The study on the Cerutti Mastodon site published by Holen et al. (2017), reporting possible evidence of an unidentified species of the genus Homo living in California 130,000 years ago,[418] is criticized by Ferraro et al. (2018).[419][420]
  • Bone retouchers dated as approximately 125–105,000 years old are described from the Lingjing site in Henan, China by Doyon et al. (2018), representing the first evidence from Eastern Asia for the use of bone as raw material to modify stone tools.[421]
  • A 90,000-years-old specialized bone tool discovered in association with the Aterian techno-complex is described from the cave site of Dar es-Soltan 1 (Morocco) by Bouzouggar et al. (2018).[422]
  • A study on the antiquity of the remains of Homo antecessor, based on the first direct Electron Spin Resonance dating of a tooth from the TD6 unit of Atapuerca Gran Dolina site (Spain), is published by Duval et al. (2018).[423]
  • A study aiming to test the hypothesis if Homo antecessor molars approximated the Neanderthal rather than the Homo sapiens condition for tissue proportions and enamel thickness is published by Martín-Francés et al. (2018).[424]
  • An assemblage of hominin tracks produced by adults and children potentially as young as 12 months, probably members of the species Homo heidelbergensis living 700,000 years ago, is described from the Upper Awash Valley (Ethiopia) by Altamura et al. (2018).[425]
  • A study on the morphology and function of the browridge of the Kabwe 1 archaic hominin specimen is published by Godinho, Spikins & O'Higgins (2018).[426]
  • A study intending to detect introgressed Denisovan genetic material in present-day human genomes is published by Browning et al. (2018), who report evidence of Denisovan ancestry in populations from East and South Asia and Papuans, and interpret their findings as indicating that at least two distinct instances of Denisovan admixture into modern humans occurred.[427]
  • Genome recovered from a bone fragment from the Denisova Cave (Russia) is presented by Slon et al. (2018), who interpret the studied individual as the offspring of a Neanderthal mother and a Denisovan father.[428]
  • A study on the absolute bone volume in five human long bones from the Sima de los Huesos site is published by Carretero et al. (2018), who interpret their findings as indicating that Sima de los Huesos hominins had on average heavier long bones than extant humans of the same size.[429]
  • A study on the stone tools from the site of la Noira (France) and their implications for reconstructing early Acheulean hominin behavior is published by Hardy et al. (2018), who argue that the hominins from this site used a broad range of resources including wood, plants, mammals, and possibly birds and fish, and that Middle Pleistocene hominins had detailed local environmental knowledge and were able to adapt to a wide range of environments.[430]
  • A study aiming to estimate total lung capacity of Neanderthals, as well as Early Pleistocene hominins from the Gran Dolina site ATD6 (Spain), is published by García-Martínez et al. (2018).[431]
  • A series of partially charred wooden tools is described from the late Middle Pleistocene site of Poggetti Vecchi (central Italy) by Aranguren et al. (2018), who interpret their findings as indicating that Neanderthals were able to choose the appropriate timber and to process it with fire to produce tools.[432]
  • A wooden tool (possibly a digging stick), likely produced by Neanderthals, is described from the early Late Pleistocene Aranbaltza III site (Basque Country, Spain) by Rios-Garaizar et al. (2018), representing the oldest wooden tool from southern Europe reported so far.[433]
  • Cave art in Cave of La Pasiega, Maltravieso cave and Ardales cave (Spain) is dated as older than 64,000 years (thus predating the arrival of modern humans in Europe) by Hoffmann et al. (2018), who interpret their findings as indicative of Neandertal authorship of the art;[434] the study is subsequently criticized by Pearce & Bonneau (2018),[435][436] Aubert, Brumm & Huntley (2018),[437][438] Slimak et al. (2018)[439][440] and White et al. (2020).[441][442]
  • A study on the age of the flowstone capping the Cueva de los Aviones deposit in southeast Spain is published by Hoffmann et al. (2018), who report that Neanderthal-associated evidence of symbolic behavior found at the site is 115,000 to 120,000 years old and predates the earliest known comparable evidence associated with modern humans by 20,000 to 40,000 years.[443]
  • Genomes of five Neanderthals from Belgium (Spy Cave and Goyet Caves), France (Les Cottés cave), Croatia (Vindija Cave) and Russia (Mezmaiskaya cave), who lived around 39,000 to 47,000 years ago, are sequenced by Hajdinjak et al. (2018).[444]
  • A study on Neanderthal skeletal remains and animal fossils from the Vindija Cave, and on their implications for inferring Neanderthal behaviour, is published by Patou-Mathis, Karavanić & Smith (2018).[445]
  • A study evaluating three hypotheses forwarded to explain the distinctive Neanderthal face is published by Wroe et al. (2018).[446]
  • A study evaluating ecological niche similarity between the datasets of morphologically diagnostic Neanderthal remains and of archaeological sites with Middle Paleolithic artifacts (but no diagnostic hominin remains), as well as assessing its implications for inferring whether those archaeological sites represent Neanderthal occurrences, is published by Bible & Peterson (2018).[447]
  • Gaudzinski-Windheuser et al. (2018) report perforations observed on two fallow deer skeletons from the 120,000-year-old lake shore deposits from Neumark-Nord (Germany), interpreted as evidence of close-range use of thrusting spears by Neanderthals.[448]
  • A study on the timing and duration of periods of climate deterioration in the interior of the Iberian Peninsula in the late Pleistocene, evaluating the impact of climate on the abandonment of inner Iberian territories by Neanderthals 42,000 years ago, is published by Wolf et al. (2018).[449]
  • A study on pollen recovered from hyaena coprolites from Vanguard Cave (Gibraltar), and on its implications for reconstructing the vegetation landscapes in the environment inhabited by southern Iberian Neanderthals during the MIS 3, is published by Carrión et al. (2018).[450]
  • Evidence of bird and carnivore exploitation by Neanderthals (cut-marks in golden eagle, raven, wolf and lynx remains) is reported from the Axlor site (Spain) by Gómez-Olivencia et al. (2018).[451]
  • The first direct artefactual evidence for regular, systematic fire production by Neanderthals is reported from archaeological layers attributed to late Mousterian industries at multiple sites throughout France by Sorensen, Claud & Soressi (2018).[452]
  • A study on Neanderthal manual activities is published by Karakostis et al. (2018), who report evidence of habitual performance of precision grasping by Neanderthals.[453]
  • 3D virtual reconstruction of the thorax of the Kebara 2 Neanderthal individual is presented by Gómez-Olivencia et al. (2018).[454]
  • A study aiming to determine whether metabolic differences between competing populations of Neanderthals and anatomically modern humans alone could have accounted for Neanderthal extinction, as well as investigating Neanderthal fire use, is published by Goldfield, Booton & Marston (2018).[455]
  • A study on the climate changes in Europe during the Middle–Upper Paleolithic transition (based on speleothem records from the Ascunsă Cave and from the Tăușoare Cave, Romania), and on their implications for the replacement of Neanderthals by modern humans in Europe, is published by Fernández et al. (2018).[456]
  • A study on the cultural attribution and stratigraphic integrity of the Neanderthal skeletal material from La Roche-à-Pierrot, Saint-Césaire (France), evaluating whether there is reliable evidence for a Neanderthal-Châtelperronian association at this site, is published by Gravina et al. (2018).[457]
  • A study aiming to reconstruct 3D brain shape of Neanderthals and early Homo sapiens is published by Kochiyama et al. (2018).[458]
  • A study on patterns of seasonal variation in the environment inhabited by Neanderthals, on Neanderthal life history and on their exposure to potential environmental hazards, as indicated by data from oxygen isotopes, trace element distributions and tooth development in two Neanderthals and one modern human from Payre (an archeological site in the Rhone Valley, France), is published by Smith et al. (2018).[459]
  • A study on the human teeth from the Middle Pleistocene sites of Fontana Ranuccio and Visogliano (Italy), aiming to identify the presence, if any, of a Neanderthal-like signature in the inner structure of these teeth, is published by Zanolli et al. (2018).[460]
  • Evidence indicating that interbreeding between Neanderthals and modern humans led to the exposure of each species to novel viruses and to the exchange of adaptive alleles that provided resistance against these viruses is presented by Enard & Petrov (2018).[461]
  • A study on Neanderthals and early Upper Paleolithic anatomically modern humans, reassessing the hypothesis of higher skull trauma prevalence among Neanderthals than among anatomically modern humans, is published by Beier et al. (2018).[462]
  • A study on the age of the Buran-Kaya III site in Crimea is published by Prat et al. (2018), who interpret their findings as casting doubt on the survival of Neanderthal refuge zones in Crimea 28,000 years before present, and indicating that the human remains from this site represent some of the oldest evidence of anatomically modern humans in Europe.[463]
  • A study on the use of plants by early modern humans during the Middle Stone Age as indicated by analyses of phytoliths from the Pinnacle Point locality (South Africa) is published by Esteban et al. (2018).[464]
  • A study on the climatic changes in the Lake Tana area in the last 150,000 years and their implications for early modern human dispersal out of Africa is published by Lamb et al. (2018).[465]
  • A review of fossil, archaeological, genetic, and paleoenvironmental data on the origin of Homo sapiens is published by Scerri et al. (2018), who argue that Homo sapiens evolved within a set of interlinked groups living across Africa, whose connectivity changed through time, rather than from a single region/population in Africa.[466]
  • A review of the archaeological and palaeoenvironmental datasets relating to the Middle–Late Pleistocene dispersal of Homo sapiens within and beyond Africa is published by Roberts & Stewart (2018), who argue that H. sapiens developed a new ecological niche.[467]
  • A study on the evolution of modern human brain shape based on endocasts of Homo sapiens fossils from different geologic time periods is published by Neubauer, Hublin & Gunz (2018).[468]
  • Late Pleistocene hominin tracks, probably produced by Homo sapiens, are described from the Waenhuiskrans Formation (South Africa) by Helm et al. (2018).[469]
  • A study on the proxy evidence for environmental changes during past 116,000 years in lake sediment cores from the Chew Bahir basin, south Ethiopia (close to the key hominin site of Omo Kibish), and on its implications for inferring the environmental context for dispersal of anatomically modern humans from northeastern Africa, is published by Viehberg et al. (2018).[470]
  • A study on the age of a modern human mandible with teeth from the Misliya cave (Mount Carmel, Israel) is published by Hershkovitz et al. (2018), who date the fossil as at least 177,000 years old, representing the oldest reported fossil of a member of the Homo sapiens clade found outside Africa.[471][472][473]
  • A phalanx of a member of the species Homo sapiens is described from the ≈95–86,000 years old Al Wusta site (An Nafud, Saudi Arabia) by Groucutt et al. (2018), representing the oldest directly dated fossil of Homo sapiens found outside Africa and the Levant.[474]
  • A study on the effects of the Toba supereruption in East Africa is published by Yost et al. (2018), who find no evidence of the eruption causing a volcanic winter in East Africa or a population bottleneck among African populations of anatomically modern humans.[475]
  • Microscopic glass shards characteristic of the Youngest Toba Tuff (ashfall from the Toba eruption), dated as approximately 74,000 years old, are described from two archaeological sites on the south coast of South Africa by Smith et al. (2018), who interpret their findings as indicating that humans in this region thrived through the Toba event and the ensuing full glacial conditions.[476]
  • Evidence of human activity dating back to 78,000 years ago is reported from the Panga ya Saidi cave (Kenya) by Shipton et al. (2018), who describe a rich technological sequence that includes lithic forms elsewhere associated with the Middle Stone Age and the Later Stone Age.[477]
  • A cross-hatched pattern drawn with an ochre crayon is reported from approximately 73,000-year-old Middle Stone Age levels at Blombos Cave (South Africa) by Henshilwood et al. (2018), pre-dating previously known abstract and figurative drawings by at least 30,000 years.[478]
  • A study on the age of the cave art from the Kapova Cave (Russia) is published by Dublyansky et al. (2018).[479]
  • New rock art site, linkable chronoculturally to the Early Upper Paleolithic, is identified in Las Ventanas Cave (Spain) by Cortés-Sánchez et al. (2018).[480]
  • Rock art, including a figurative painting of an animal dating to at least 40,000 years ago, is described from the Lubang Jeriji Saléh cave (East Kalimantan, Indonesia) by Aubert et al. (2018).[481]
  • A study on changes in ochre use throughout an entire Upper Paleolithic sequence at Hohle Fels cave (Germany) is published by Velliky, Porr & Conard (2018).[482]
  • A study on the timing and mechanisms of the initial colonization of the Nwya Devu Paleolithic site (Tibetan Plateau) by humans is published by Zhang et al. (2018).[483]
  • A study on the human use of rainforest plant resources of prehistoric Sri Lanka, as indicated by data from phytoliths from the Fahien Rock Shelter sediments, is published by Premathilake & Hunt (2018).[484]
  • A reassessment of the Late Pleistocene human occupation site at Leang Burung 2 (Sulawesi, Indonesia), presenting new stratigraphic information and dating evidence from the site, is published by Brumm et al. (2018).[485]
  • A study on the timing of arrival of anatomically modern humans to Southeast Asia and Sahul is published by O'Connell et al. (2018), who consider it unlikely that the artifacts from Madjedbebe (northern Australia) reported by Clarkson et al. (2017)[486] are more than 50,000 years old.[487]
  • A study investigating the most likely route used by early modern humans to colonize Sahul is published by Kealy, Louys & O'Connor (2018).[488]
  • A study on the results of re-excavation of Karnatukul (Serpent's Glen rockshelter in the Australian Little Sandy Desert), as well as on the chronology of this site, is published by McDonald et al. (2018).[489]
  • Genomic data from seven 15,000-year-old modern humans from Morocco, attributed to the Iberomaurusian culture, is presented by van de Loosdrecht et al. (2018), who report evidence of a genetic affinity of the studied individuals with early Holocene Near Easterners.[490]
  • A study on charred food remains from Shubayqa 1, a Natufian hunter-gatherer site located in northeastern Jordan and dated to 14.6–11.6 ka cal BP, is published by Arranz-Otaegui et al. (2018), who interpret their findings as providing the earliest empirical evidence for the preparation of bread-like products by Natufian hunter-gatherers, predating the emergence of agriculture by at least 4,000 years.[491]
  • A study on the timing of first human arrival in Madagascar, as indicated by evidence of prehistoric human modification of multiple elephant bird postcranial elements, is published by Hansford et al. (2018).[492]
  • A study on the timing of human colonization of Madagascar, as indicated by data from butchery marks on megafaunal bones, radiocarbon chronology of bone deposits and an analysis of the sedimentary record, is published by Anderson et al. (2018).[493]
  • Description of the morphology of three partial human mandibles from the Niah Caves (Sarawak, Malaysia) and a study on the age of these bones is published by Curnoe et al. (2018).[494]
  • A study investigating whether the human population occupying Beringia during the Last Glacial Maximum represented an example of human adaptation to an extreme environment, focusing on gene variations which might have conferred advantage in transmitting nutrients from mother to infant through breast milk under conditions of extremely low UV, is published by Hlusko et al. (2018).[495]
  • A review of the genetic, archeological and paleoecological data on the course of the settlement of the Americas is published by Potter et al. (2018), who argue that available evidence is consistent with an inland migration through an ice-free corridor or with a migration through Pacific coastal routes (or both), but neither can be rejected.[496]
  • A study on the timing of the latest Pleistocene glaciation in southeastern Alaska and its implication for inferring the route and timing of early human migration to the Americas is published by Lesnek et al. (2018).[497]
  • A study on the technological traits of fluted projectile points from northern Alaska and Yukon, in combination with artifacts from further south in Canada, the Great Plains, and eastern United States, evaluating the plausibility of historical relatedness and evolutionary patterns in the spread of fluted-point technology in North America in the latest Pleistocene and earliest Holocene, is published by Smith & Goebel (2018).[498]
  • Late Pleistocene human footprints left by a minimum of three people are described from the Calvert Island (British Columbia, Canada) by McLaren et al. (2018).[499]
  • Associated human and ground sloth tracks are described from the Rancholabrean deposits in the White Sands National Park (New Mexico, United States) by Bustos et al. (2018), who interpret their finding as evidence of humans actively stalking, harassing and likely hunting ground sloths in the late Pleistocene.[500]
  • A study on the age of a series of sedimentary samples from the earliest cultural assemblage at the Gault Site (Texas, United States), including a previously unknown, early projectile point technology unrelated to Clovis, is published by Williams et al. (2018).[501]
  • A robust lithic projectile point assemblage is reported from the layers dated between ≈13.5 and 15.5 ka ago at the Debra L. Friedkin site (Texas, United States) by Waters et al. (2018).[502]
  • A study on the age of the Anzick burial site (Montana, United States) is published by Becerra-Valdivia et al. (2018).[503]
  • The genome of two infants from the Upward Sun River site dated 11,500 years ago is sequenced, leading to the discovery of the Ancient Beringian ethnic group.[504][505]
  • Scheib et al. (2018) sequence 91 ancient human genomes from California and southwestern Ontario, demonstrating the existence of two distinct ancestries in North America, and finding contribution from both of these ancestral populations in all modern Central and South Americans.[506]
  • Posth et al. (2018) report genome-wide ancient DNA from 49 individuals from Central and South America, all dating to at least ~9,000 years ago, and interpret their finding as indicative of two previously undocumented genetic exchanges between North and South America.[507]
  • A study on the history of dispersal and diversification of people within the Americas, based on data from ancient human genomes spanning Alaska to Patagonia, is published by Moreno-Mayar et al. (2018).[508]
  • A study on the site context, geoarchaeology and material assemblages of the Valiente lithic workshop site (Chile) is published by Méndez et al. (2018).[509]
  • Evidence of plant domestication and food production from the early and middle Holocene site of Teotonio (southwestern Amazonia, Brazil) is presented by Watling et al. (2018).[510]
  • A study on the morphological affinity of the late Paleolithic human skull from the Zlatý kůň site in the Bohemian Karst (Czech Republic) is published by Rmoutilová et al. (2018), who also evaluate whether it is possible to determine the sex of the Zlatý kůň individual based on its skull morphology.[511]
  • A study on the Mesolithic site of Star Carr, indicating that there was intensive human activity at the site for several hundred years when the community was subject to multiple, severe, abrupt climate events that impacted air temperatures, the landscape and the ecosystem of the region, is published by Blockley et al. (2018).[512]
  • A study on the tools preserved with Ötzi, evaluating their implications for inferring Ötzi's individual history, the reconstruction of his last days and his cultural and social background, is published by Wierer et al. (2018).[513]
  • A study on the contents of Ötzi's stomach is published by Maixner et al. (2018).[514]
  • A study on the compositions of the faunal and stone artifact assemblages at Liang Bua (Flores, Indonesia), aiming to determine the last appearance dates of Stegodon, giant marabou stork, Old World vulture belonging to the genus Trigonoceps, and Komodo dragon at the Liang Bua site, and to determine what raw materials were preferred by hominins from this site ~50,000–13,000 years ago and whether these preferences were similar to those seen in the stone artifact assemblages attributed to Homo floresiensis or to those attributed to modern humans, is published by Sutikna et al. (2018).[515]
  • A study on genetic variation among a population of Rampasasa pygmies living close to the cave where remains of Homo floresiensis were discovered is published by Tucci et al. (2018), who find evidence of admixture with Denisovans and Neanderthals but no evidence for gene flow with other archaic hominins, and interpret their findings as indicating that at least two independent instances of hominin insular dwarfism occurred on Flores.[516]
  • A synthesis of patterns and incidences of developmental abnormalities and anomalies in the Pleistocene Homo fossil record is published by Trinkaus (2018).[517]

New taxa

Name Novelty Status Authors Age Unit Location Notes Images

Asiadapis tapiensis[518]

Sp. nov

Valid

Rose et al.

Eocene (early Ypresian)

Cambay Shale Formation

 India

Brontomomys[519]

Gen. et sp. nov

Valid

Atwater & Kirk

Eocene (Uintan)

Friars Formation

 United States
( California)

A member of the family Omomyidae. Genus includes new species B. cerutti.

Ekwiiyemakius[519]

Gen. et sp. nov

Valid

Atwater & Kirk

Eocene (Uintan)

Friars Formation

 United States
( California)

A member of the family Omomyidae. Genus includes new species E. walshi.

Europolemur midiensis[174]

Sp. nov

Valid

Godinot in Godinot et al.

Eocene

 France

Gunnelltarsius[519]

Gen. et sp. nov

Valid

Atwater & Kirk

Eocene (Uintan)

Friars Formation

 United States
( California)

A member of the family Omomyidae. Genus includes new species G. randalli.

Junzi[520]

Gen. et sp. nov

Valid

Turvey et al.

Holocene

 China

A gibbon. Genus includes new species J. imperialis.

Namadapis[521]

Gen. et sp. nov

Valid

Godinot, Senut & Pickford

Middle Eocene

 Namibia

A member of the family Adapidae belonging to the subfamily Caenopithecinae. The type species is N. interdictus.

Rouzilemur[174]

Gen. et sp. nov

Valid

Godinot in Godinot et al.

Eocene

 France

A member of the family Notharctidae. Genus includes new species R. pulcher.

Simiolus minutus[522][523]

Sp. nov

Valid

Rossie & Hill

Middle Miocene

Ngorora Formation

 Kenya

Walshina[524]

Gen. et sp. et comb. nov

Valid

López-Torres, Silcox & Holroyd

Eocene (Uintan and Duchesnean)

Sespe Formation

 United States
( California
 Wyoming)

A member of the family Omomyidae. The type species is W. esmaraldensis; genus also includes W. mcgrewi (Robinson, 1968) and W. shifrae (Krishtalka, 1978).

Other eutherians

  • Putative Cretaceous metatherian Sinodelphys szalayi is reinterpreted as an early member of Eutheria by Bi et al. (2018).[525]
  • A study on the anatomy of the Early Cretaceous eutherian Endotherium niinomii is published by Wang et al. (2018), who consider this species to be a valid taxon.[526]
  • Napoli et al. (2018) digitally visualize and describe the endocast of a taeniodont Onychodectes tisonensis.[527]
  • A study evaluating when solenodons split from other eulipotyphlans, based on updated fossil calibrations, is published by Springer, Murphy & Roca (2018), who place the split between solenodons and other eulipotyphlans in the Late Cretaceous.[528]
  • Fragment of the mandible of the mole Mongoloscapter zhegalloi is described from the Late Oligocene Tsakhir-Ula locality (Mongolia) by Lopatin (2018), representing the second record of Mongoloscapter reported so far.[529]
  • A study comparing the size and morphology of the common shrew (Sorex araneus), Sorex runtonensis, the tundra shrew (S. tundrensis) and the Caucasian shrew (S. satununi) with the type material of the fossil shrew Sorex subaraneus (in order to either support or falsify the validity of S. subaraneus and the putative ancestry of the extant common shrew) is published by Rzebik-Kowalska & Pereswiet-Soltan (2018).[530]
  • A study on the phylogenetic relationships of the gymnure Deinogalerix within the tribe Galericini is published by Borrani et al. (2018).[531][532]
  • A study on the systematic usefulness of the humerus in proterotheriid litopterns is published by Corona, Perea & Ubilla (2018), who consider the species Proterotherium berroi Kraglievich (1930) to be a probable synonym of Neolicaphrium recens.[533]
  • A study on the diversity of shapes of snout in notoungulates and on the evolution of the wide range of shapes of snout in this group of mammals is published by Gomes Rodrigues et al. (2018).[534]
  • A study on the variation of teeth shape and on the factors affecting changes in the shape of teeth of notopithecid notoungulates is published by Scarano & Vera (2018).[535]
  • A study on the variation of teeth shape in late Miocene members of the hegetotheriid notoungulate genus Paedotherium, as well as its implications for the systematics and phylogenetic relationships of the late Miocene species of Paedotherium, is published by Ercoli et al. (2018).[536]
  • A study on the variability of the diagnostic characters in the fossils of members of the hegetotheriid notoungulate genus Tremacyllus is published by Sostillo, Cerdeño & Montalvo (2018), who consider the species T. incipiens to be a junior synonym of the species T. impressus.[537]
  • New fossil remains of pachyrukhine hegetotheriid notoungulates are described from the Huayquerías del Este (Mendoza, Argentina) by Vera & Ercoli (2018), who consider the species Tremacyllus subdiminutus to be a synonym of T. impressus.[538]
  • Fernández-Monescill et al. (2018) provide muscular reconstruction and infer functional properties of the forelimb of the mesotheriid notoungulate Plesiotypotherium achirense.[539]
  • A study on the tooth wear, tooth replacement and enamel microstructure in an perissodactyl-like ungulate Cambaytherium is published by von Koenigswald et al. (2018).[540]
  • Anatomical redescription of the periptychid species Periptychus carinidens is published by Shelley, Williamson & Brusatte (2018).[541]
  • Description of new fossil material of the hyaenodont species Prionogale breviceps from the Miocene of Kenya and Uganda, and a study on the anatomy of teeth of Namasector soriae, is published by Morales & Pickford (2018).[542]
  • Partial skull of Hyaenodon leptorhynchus is described from the Chattian deposits in Séon Saint-André (Marseille, France) by Solé et al. (2018).[543]
  • A study on the early Pleistocene leporid fossils from the Roland Springs Ranch Locality 1 (Texas, United States), considered against the backdrop of Neogene-Quaternary faunal turnover that included the radiation within the subfamily Leporinae, is published by Moretti (2018).[544]
Name Novelty Status Authors Age Unit Location Notes Images

Ambolestes[525]

Gen. et sp. nov

Valid

Bi et al.

Early Cretaceous

Yixian Formation

 China

An early eutherian. Genus includes new species A. zhoui.

Arcius hookeri[545]

Sp. nov

Valid

López-Torres & Silcox

Early Eocene

Blackheath Beds

 United Kingdom

A member of Plesiadapiformes belonging to the family Paromomyidae.

Arcius ilerdensis[545]

Sp. nov

Valid

López-Torres & Silcox

Early Eocene

 Spain

Originally described as a member of Plesiadapiformes belonging to the family Paromomyidae and a species of Arcius; Beard & Métais (2024) reinterpreted it as a member of Apatotheria belonging to the family Apatemyidae and a species of Heterohyus.[546]

Chiromyoides mauberti[547]

Sp. nov

Valid

De Bast, Gagnaison & Smith

Late Paleocene

 France

A member of Plesiadapiformes belonging to the family Plesiadapidae.

Darbonetus sigei[548]

Sp. nov

Valid

Hooker

Eocene (Priabonian)

 France

A member of the family Nyctitheriidae.

Dissacus raslanloubatieri[549]

Sp. nov

Valid

Solé et al.

Eocene (Ypresian)

 France

A member of the family Mesonychidae.

Dissacus rougierae[549]

Sp. nov

Valid

Solé et al.

Eocene (Ypresian)

 France

A member of the family Mesonychidae.

Eomorphippus bondi[550]

Sp. nov

Valid

Wyss, Flynn & Croft

Early Oligocene

Abanico Formation

 Chile

A notohippid notoungulate.

Eomorphippus neilopdykei[550]

Sp. nov

Valid

Wyss, Flynn & Croft

Early Oligocene

Abanico Formation

 Chile

A notohippid notoungulate.

Falcontoxodon[551]

Gen. et sp. nov

Valid

Carrillo et al.

Early Pliocene–late Pliocene or early Pleistocene

Falcón Basin
(Codore Formation
San Gregorio Formation)

 Venezuela

A member of Toxodontidae. Genus includes new species F. aguilerai.

Ferrequitherium[552]

Gen. et sp. nov

Valid

Scott

Paleocene (early Tiffanian)

Paskapoo Formation

 Canada
( Alberta)

A relative of Horolodectes. Genus includes new species F. sweeti.

Hilarcotherium miyou[551]

Sp. nov

Valid

Carrillo et al.

Middle Miocene

Castilletes Formation

 Colombia

A member of Astrapotheriidae.

Hovurlestes[553]

Gen. et sp. nov

Valid

Lopatin & Averianov

Early Cretaceous (AptianAlbian)

Höovör locality

 Mongolia

A basal member of Eutheria. The type species is H. noyon.

Llullataruca[554]

Gen. et sp. nov

Valid

McGrath, Anaya & Croft

Laventan

 Bolivia

A member of Litopterna belonging the family Macraucheniidae. Genus includes new species L. shockeyi.

Platychoerops boyeri[547]

Sp. nov

Valid

De Bast, Gagnaison & Smith

Late Paleocene

 France

A member of Plesiadapiformes belonging to the family Plesiadapidae.

Plesiadapis berruensis[555]

Sp. nov

Valid

Jehle et al.

Late Paleocene

 France

A member of Plesiadapiformes.

Plesiadapis ploegi[547]

Sp. nov

Valid

De Bast, Gagnaison & Smith

Late Paleocene

 France

A member of Plesiadapiformes belonging to the family Plesiadapidae.

Propterodon panganensis[556]

Sp. nov

Valid

De Bonis et al.

Middle Eocene

Pondaung Formation

 Myanmar

A member of the family Hyaenodontidae.

Rosendo[550]

Gen. et comb. nov

Valid

Wyss, Flynn & Croft

Early Oligocene

Sarmiento Formation

 Argentina
 Chile

A notohippid notoungulate; a new genus for "Eomorphippus" pascuali Simpson (1967).

Rusconitherium[557]

Gen. et comb. nov

Valid

Cerdeño, Vera & Combina

Early Miocene

Mariño Formation

 Argentina

A mesotheriid notoungulate; a new genus for "Trachytherus" mendocensis Simpson & Minoprio (1949).

Sardolagus[558]

Gen. et sp. nov

Valid

Angelone et al.

Early Pleistocene

 Italy

A member of the family Leporidae. Genus includes new species S. obscurus.

Shargainosorex[559]

Gen. et sp. nov

Valid

Zazhigin & Voyta

Middle Miocene

Oshin Suite

 Mongolia

A shrew belonging to the subfamily Crocidosoricinae. The type species is S. angustirostris.

Termastherium[550]

Gen. et sp. nov

Valid

Wyss, Flynn & Croft

Early Oligocene

Abanico Formation

 Chile

A leontiniid notoungulate. Genus includes new species T. flacoensis.

'Theosodon' arozquetai[554]

Sp. nov

Valid

McGrath, Anaya & Croft

Laventan

 Bolivia

A member of Litopterna belonging the family Macraucheniidae, tentatively referred to the genus Theosodon.

Wyonycteris kingi[560] Sp. nov Valid Hooker Paleogene Woolwich  United Kingdom A member of the family Nyctitheriidae. Announced in 2018; the final version of the article naming it was published in 2020.

Xotodon caravela[561]

Sp. nov

Valid

Armella, García-López & Dominguez

Late Miocene-early Pliocene

Aconquija Formation

 Argentina

Zofiagale[562]

Gen. et sp. nov

Valid

López-Torres & Fostowicz-Frelik

Late Eocene

Ergilin Dzo Formation

 Mongolia

A relative of Anagale. The type species is Z. ergilinensis.

Other mammals

Name Novelty Status Authors Age Unit Location Notes Images

Brasilestes[568]

Gen. et sp. nov

Castro et al.

Late Cretaceous

Adamantina Formation

 Brazil

An early member of Tribosphenida. The type species is B. stardusti.

Catopsalis kakwa[569]

Sp. nov

Valid

Scott, Weil & Theodor

Early Paleocene

 Canada
( Alberta)

A multituberculate belonging to the group Taeniolabidoidea.

Cifelliodon[570]

Gen. et sp. nov

Valid

Huttenlocker et al.

Early Cretaceous

Cedar Mountain Formation

 United States
( Utah)

A member of Haramiyida belonging to the family Hahnodontidae. The type species is C. wahkarmoosuch.

Golercosmodon[571]

Gen. et sp. nov

Valid

Lofgren et al.

Paleocene (Tiffanian)

Goler Formation

 United States
( California)

A multituberculate. Genus includes new species G. mylesi.

Khorotherium[572]

Gen. et sp. nov

Valid

Averianov et al.

Early Cretaceous (?Berriasian-Barremian)

Batylykh Formation

 Russia
( Sakha Republic)

A member of Docodonta belonging to the family Tegotheriidae. The type species is K. yakutensis.

Litovoi[573]

Gen. et sp. nov

Disputed

Csiki-Sava et al.

Late Cretaceous (Maastrichtian)

 Romania

A multituberculate belonging to the family Kogaionidae. The type species is L. tholocephalos. Smith et al. (2021) considered it to be a junior synonym of Barbatodon transylvanicus.[574]

Sangarotherium[572]

Gen. et sp. nov

Valid

Averianov et al.

Early Cretaceous (?Berriasian-Barremian)

Batylykh Formation

 Russia
( Sakha Republic)

A member of Eutriconodonta of uncertain phylogenetic placement. The type species is S. aquilonium.

References

  1. ^ K. E. Jones; K. D. Angielczyk; P. D. Polly; J. J. Head; V. Fernandez; J. K. Lungmus; S. Tulga; S. E. Pierce (2018). "Fossils reveal the complex evolutionary history of the mammalian regionalized spine" (PDF). Science. 361 (6408): 1249–1252. Bibcode:2018Sci...361.1249J. doi:10.1126/science.aar3126. PMID 30237356. S2CID 52310287.
  2. ^ Stephan Lautenschlager; Pamela G. Gill; Zhe-Xi Luo; Michael J. Fagan; Emily J. Rayfield (2018). "The role of miniaturization in the evolution of the mammalian jaw and middle ear". Nature. 561 (7724): 533–537. Bibcode:2018Natur.561..533L. doi:10.1038/s41586-018-0521-4. PMID 30224748. S2CID 52284325.
  3. ^ A.W. Crompton; C. Musinsky; G.W. Rougier; B.-A.S. Bhullar; J. A. Miyamae (2018). "Origin of the lateral wall of the mammalian skull: fossils, monotremes and therians revisited". Journal of Mammalian Evolution. 25 (3): 301–313. doi:10.1007/s10914-017-9388-7. S2CID 16072755.
  4. ^ Derek C. W. Raisanen; Stephen T. Hasiotis (2018). "New ichnotaxa of vertebrate burrows from the Salt Wash Member, Upper Jurassic Morrison Formation, south-eastern Utah (USA)". Annales Societatis Geologorum Poloniae. 88 (2): 181–202. doi:10.14241/asgp.2018.017 (inactive 15 January 2025).{{cite journal}}: CS1 maint: DOI inactive as of January 2025 (link)
  5. ^ Mathias M. Pires; Brian D. Rankin; Daniele Silvestro; Tiago B. Quental (2018). "Diversification dynamics of mammalian clades during the K–Pg mass extinction". Biology Letters. 14 (9): 20180458. doi:10.1098/rsbl.2018.0458. PMC 6170748. PMID 30258031.
  6. ^ Stephanie M. Smith; Courtney J. Sprain; William A. Clemens; Donald L. Lofgren; Paul R. Renne; Gregory P. Wilson (2018). "Early mammalian recovery after the end-Cretaceous mass extinction: A high-resolution view from McGuire Creek area, Montana, USA". GSA Bulletin. 130 (11–12): 2000–2014. doi:10.1130/B31926.1. S2CID 134501919.
  7. ^ Caitlin Leslie; Daniel Peppe; Thomas Williamson; Dario Bilardello; Matthew Heizler; Ross Secord; Tyler Leggett (2018). "High-resolution magnetostratigraphy of the Upper Nacimiento Formation, San Juan Basin, New Mexico, USA: Implications for basin evolution and mammalian turnover". American Journal of Science. 318 (3): 300–334. Bibcode:2018AmJS..318..300L. doi:10.2475/03.2018.02. S2CID 135327595. Archived from the original on 2023-10-19. Retrieved 2019-08-18.
  8. ^ Felisa A. Smith; Rosemary E. Elliott Smith; S. Kathleen Lyons; Jonathan L. Payne (2018). "Body size downgrading of mammals over the late Quaternary". Science. 360 (6386): 310–313. Bibcode:2018Sci...360..310S. doi:10.1126/science.aao5987. PMID 29674591. S2CID 5046004.
  9. ^ Miranta Kouvari; Alexandra A.E. van der Geer (2018). "Biogeography of extinction: The demise of insular mammals from the Late Pleistocene till today". Palaeogeography, Palaeoclimatology, Palaeoecology. 505: 295–304. Bibcode:2018PPP...505..295K. doi:10.1016/j.palaeo.2018.06.008. S2CID 133848944.
  10. ^ Adrián Castro-Insua; Carola Gómez-Rodríguez; John J. Wiens; Andrés Baselga (2018). "Climatic niche divergence drives patterns of diversification and richness among mammal families". Scientific Reports. 8 (1): Article number 8781. Bibcode:2018NatSR...8.8781C. doi:10.1038/s41598-018-27068-y. PMC 5993713. PMID 29884843.
  11. ^ Julia V. Tejada-Lara; Bruce J. MacFadden; Lizette Bermudez; Gianmarco Rojas; Rodolfo Salas-Gismondi; John J. Flynn (2018). "Body mass predicts isotope enrichment in herbivorous mammals". Proceedings of the Royal Society B: Biological Sciences. 285 (1881): 20181020. doi:10.1098/rspb.2018.1020. PMC 6030519. PMID 30051854.
  12. ^ Jiekun He; Holger Kreft; Siliang Lin; Yang Xu; Haisheng Jiang (2018). "Cenozoic evolution of beta diversity and a Pleistocene emergence for modern mammal faunas in China". Global Ecology and Biogeography. 27 (11): 1326–1338. Bibcode:2018GloEB..27.1326H. doi:10.1111/geb.12800. S2CID 91788893.
  13. ^ Robin M. D. Beck; Charles Baillie (2018). "Improvements in the fossil record may largely resolve current conflicts between morphological and molecular estimates of mammal phylogeny". Proceedings of the Royal Society B: Biological Sciences. 285 (1893): 20181632. doi:10.1098/rspb.2018.1632. PMC 6304057. PMID 30963896.
  14. ^ C. Verity Bennett; Paul Upchurch; Francisco J. Goin; Anjali Goswami (2018). "Deep time diversity of metatherian mammals: implications for evolutionary history and fossil-record quality". Paleobiology. 44 (2): 171–198. Bibcode:2018Pbio...44..171B. doi:10.1017/pab.2017.34. hdl:11336/94590. S2CID 46796692.
  15. ^ Alexandria L. Brannick; Gregory P. Wilson (2018). "New specimens of the Late Cretaceous metatherian Eodelphis and the evolution of hard-object feeding in the Stagodontidae". Journal of Mammalian Evolution. 27 (1): 1–16. doi:10.1007/s10914-018-9451-z. S2CID 52883299.
  16. ^ Darin A. Croft; Russell K. Engelman; Tatiana Dolgushina; Gina Wesley (2018). "Diversity and disparity of sparassodonts (Metatheria) reveal non-analogue nature of ancient South American mammalian carnivore guilds". Proceedings of the Royal Society B: Biological Sciences. 285 (1870): 20172012. doi:10.1098/rspb.2017.2012. PMC 5784193. PMID 29298933.
  17. ^ Christian de Muizon; Sandrine Ladevèze; Charlène Selva; Robin Vignaud; Florent Goussard (2018). "Allqokirus australis (Sparassodonta, Metatheria) from the early Palaeocene of Tiupampa (Bolivia) and the rise of the metatherian carnivorous radiation in South America". Geodiversitas. 40 (16): 363–459. doi:10.5252/geodiversitas2018v40a16. S2CID 134681633. Archived from the original on 2018-08-25. Retrieved 2018-08-24.
  18. ^ Lauren C. White; Frédérik Saltré; Corey J. A. Bradshaw; Jeremy J. Austin (2018). "High-quality fossil dates support a synchronous, Late Holocene extinction of devils and thylacines in mainland Australia". Biology Letters. 14 (1): 20170642. doi:10.1098/rsbl.2017.0642. PMC 5803592. PMID 29343562.
  19. ^ Lauren C. White; Kieren J. Mitchell; Jeremy J. Austin (2018). "Ancient mitochondrial genomes reveal the demographic history and phylogeography of the extinct, enigmatic thylacine (Thylacinus cynocephalus)". Journal of Biogeography. 45 (1): 1–13. Bibcode:2018JBiog..45....1W. doi:10.1111/jbi.13101. S2CID 91011378.
  20. ^ Anna Brüniche–Olsen; Menna E. Jones; Christopher P. Burridge; Elizabeth P. Murchison; Barbara R. Holland; Jeremy J. Austin (2018). "Ancient DNA tracks the mainland extinction and island survival of the Tasmanian devil". Journal of Biogeography. 45 (5): 963–976. Bibcode:2018JBiog..45..963B. doi:10.1111/jbi.13214.
  21. ^ Wendy den Boer; Benjamin P. Kear (2018). "Is the fossil rat-kangaroo Palaeopotorous priscus the most basally branching stem macropodiform?". Journal of Vertebrate Paleontology. 38 (2): e1428196. Bibcode:2018JVPal..38E8196D. doi:10.1080/02724634.2017.1428196. S2CID 90116198.
  22. ^ Kaylene Butler; Kenny J. Travouillon; Gilbert J. Price; Michael Archer; Suzanne J. Hand (2018). "Revision of Oligo-Miocene kangaroos, Ganawamaya and Nambaroo (Marsupialia: Macropodiformes, Balbaridae)". Palaeontologia Electronica. 21 (1): Article number 21.1.8A. doi:10.26879/747.
  23. ^ Aidan M. C. Couzens; Gavin J. Prideaux (2018). "Rapid Pliocene adaptive radiation of modern kangaroos". Science. 362 (6410): 72–75. Bibcode:2018Sci...362...72C. doi:10.1126/science.aas8788. PMID 30287658. S2CID 52921257.
  24. ^ Roderick T. Wells; Aaron B. Camens (2018). "New skeletal material sheds light on the palaeobiology of the Pleistocene marsupial carnivore, Thylacoleo carnifex". PLOS ONE. 13 (12): e0208020. Bibcode:2018PLoSO..1308020W. doi:10.1371/journal.pone.0208020. PMC 6291118. PMID 30540785.
  25. ^ Russell K. Engelman; Federico Anaya; Darin A. Croft (2020). "Australogale leptognathus, gen. et sp. nov., a second species of small sparassodont (Mammalia: Metatheria) from the middle Miocene locality of Quebrada Honda, Bolivia". Journal of Mammalian Evolution. 27 (1): 37–54. doi:10.1007/s10914-018-9443-z. S2CID 49473591.
  26. ^ Leonardo M. Carneiro; Édison V. Oliveira; Francisco J. Goin (2018). "Austropediomys marshalli gen. et sp. nov., a new Pediomyoidea (Mammalia, Metatheria) from the Paleogene of Brazil: paleobiogeographic implications". Revista Brasileira de Paleontologia. 21 (2): 120–131. doi:10.4072/rbp.2018.2.03.
  27. ^ Leonardo M. Carneiro (2018). "A new protodidelphid (Mammalia, Marsupialia, Didelphimorphia) from the Itaboraí Basin and its implications for the evolution of the Protodidelphidae". Anais da Academia Brasileira de Ciências. 91 (Suppl. 2): e20180440. doi:10.1590/0001-3765201820180440. PMID 30365721.
  28. ^ Russell K. Engelman; John J. Flynn; Philip Gans; André R. Wyss; Darin A. Croft (2018). "Chlorocyon phantasma, a late Eocene borhyaenoid (Mammalia, Metatheria, Sparassodonta) from the Los Helados locality, Andean Main Range, central Chile". American Museum Novitates (3918): 1–22. doi:10.1206/3918.1. hdl:2246/6922. S2CID 92580823.
  29. ^ Laura Chornogubsky; A. Natalia Zimicz; Francisco J. Goin; Juan C. Fernicola; Patricio Payrola; Magalí Cárdenas (2018). "New Palaeogene metatherians from the Quebrada de Los Colorados Formation at Los Cardones National Park (Salta Province, Argentina)". Journal of Systematic Palaeontology. 17 (7): 539–555. doi:10.1080/14772019.2017.1417333. S2CID 91140722.
  30. ^ a b Joshua E. Cohen (2018). "Earliest Divergence of Stagodontid (Mammalia: Marsupialiformes) Feeding Strategies from the Late Cretaceous (Turonian) of North America". Journal of Mammalian Evolution. 25 (2): 165–177. doi:10.1007/s10914-017-9382-0. S2CID 18977109.
  31. ^ a b Grégoire Métais; Pauline M. Coster; John R. Kappelman; Alexis Licht; Faruk Ocakoğlu; Michael H. Taylor; K. Christopher Beard (2018). "Eocene metatherians from Anatolia illuminate the assembly of an island fauna during Deep Time". PLOS ONE. 13 (11): e0206181. Bibcode:2018PLoSO..1306181M. doi:10.1371/journal.pone.0206181. PMC 6235269. PMID 30427946.
  32. ^ William W. Korth (2018). "Review of the marsupials (Mammalia: Metatheria) from the late Paleogene (Chadronian–Arikareean: late Eocene–late Oligocene) of North America". PalZ. 92 (3): 499–523. Bibcode:2018PalZ...92..499K. doi:10.1007/s12542-017-0396-y. S2CID 135174395.
  33. ^ Michael Archer; Pippa Binfield; Suzanne J. Hand; Karen H. Black; Phillip Creaser; Troy J. Myers; Anna K. Gillespie; Derrick A. Arena; John Scanlon; Neville Pledge; Jenni Thurmer (2018). "Miminipossum notioplanetes, a Miocene forest-dwelling phalangeridan (Marsupialia; Diprotodontia) from northern and central Australia". Palaeontologia Electronica. 21 (1): Article number 21.1.2A. doi:10.26879/757.
  34. ^ Kenny J. Travouillon; Matthew J. Phillips (2018). "Total evidence analysis of the phylogenetic relationships of bandicoots and bilbies (Marsupialia: Peramelemorphia): reassessment of two species and description of a new species". Zootaxa. 4378 (2): 224–256. doi:10.11646/zootaxa.4378.2.3. PMID 29690027.
  35. ^ Francisco J. Goin; Emma C. Vieytes; Javier N. Gelfo; Laura Chornogubsky; Ana N. Zimicz; Marcelo A. Reguero (2020). "New metatherian mammal from the early Eocene of Antarctica". Journal of Mammalian Evolution. 27 (1): 17–36. doi:10.1007/s10914-018-9449-6. hdl:11336/82643. S2CID 91932037. Archived from the original on 2023-10-13. Retrieved 2022-03-09.
  36. ^ Philippa Brewer; Michael Archer; Suzanne Hand; Gilbert J. Price (2018). "A new species of Miocene wombat (Marsupialia, Vombatiformes) from Riversleigh, Queensland, Australia, and implications for the evolutionary history of the Vombatidae". Palaeontologia Electronica. 21 (2): Article number 21.2.27A. doi:10.26879/870. hdl:10141/622528.
  37. ^ Leonardo M. Carneiro (2018). "A new species of Varalphadon (Mammalia, Metatheria, Sparassodonta) from the upper Cenomanian of southern Utah, North America: Phylogenetic and biogeographic insights". Cretaceous Research. 84: 88–96. Bibcode:2018CrRes..84...88C. doi:10.1016/j.cretres.2017.11.004.
  38. ^ William Gearty; Craig R. McClain; Jonathan L. Payne (2018). "Energetic tradeoffs control the size distribution of aquatic mammals". Proceedings of the National Academy of Sciences of the United States of America. 115 (16): 4194–4199. Bibcode:2018PNAS..115.4194G. doi:10.1073/pnas.1712629115. PMC 5910812. PMID 29581289.
  39. ^ María Cristina Cardonatto; Ricardo Néstor Melchor (2018). "Large mammal burrows in late Miocene calcic paleosols from central Argentina: paleoenvironment, taphonomy and producers". PeerJ. 6: e4787. doi:10.7717/peerj.4787. PMC 5969051. PMID 29844958.
  40. ^ Víctor Adrián Pérez-Crespo; César A. Laurito; Joaquín Arroyo-Cabrales; Ana L. Valerio; Pedro Morales-Puente; Edith Cienfuegos-Alvarado; Francisco J. Otero (2018). "Feeding habits and habitat of herbivorous mammals from the Early–Late Hemphillian (Miocene) of Costa Rica". Acta Palaeontologica Polonica. 63 (4): 645–652. doi:10.4202/app.00517.2018.
  41. ^ Ferhat Kaya; Faysal Bibi; Indrė Žliobaitė; Jussi T. Eronen; Tang Hui; Mikael Fortelius (2018). "The rise and fall of the Old World savannah fauna and the origins of the African savannah biome". Nature Ecology & Evolution. 2 (2): 241–246. Bibcode:2018NatEE...2..241K. doi:10.1038/s41559-017-0414-1. hdl:10138/326196. PMID 29292396. S2CID 52810119.
  42. ^ Juan L. Cantalapiedra; M. Soledad Domingo; Laura Domingo (2018). "Multi-scale interplays of biotic and abiotic drivers shape mammalian sub-continental diversity over millions of years". Scientific Reports. 8 (1): Article number 13413. Bibcode:2018NatSR...813413C. doi:10.1038/s41598-018-31699-6. PMC 6128930. PMID 30194335.
  43. ^ Nikolai Spassov; Denis Geraads; Latinka Hristova; Georgi N. Markov; Biljana Garevska; Risto Garevska (2018). "The late Miocene mammal faunas of the Republic of Macedonia (FYROM)" (PDF). Palaeontographica Abteilung A. 311 (1–6): 1–85. Bibcode:2018PalAA.311....1S. doi:10.1127/pala/2018/0073. S2CID 134139783. Archived (PDF) from the original on 2020-05-08. Retrieved 2020-09-10.
  44. ^ Jian'en Hen; Zhaogang Shao; Qiguang Chen; Biao Xu; Qianqian Zhang; Jia Yu; Qingwei Meng; Xuefeng Zhang; Jin Wang; Dagang Zhu (2018). "Magnetochronology of late Miocene mammal fauna in Xining basin, NE Tibetan Plateau, China". Acta Geologica Sinica (English Edition). 92 (6): 2067–2078. Bibcode:2018AcGlS..92.2067H. doi:10.1111/1755-6724.13716. S2CID 135216432. Archived from the original on 2018-12-20. Retrieved 2018-12-19.
  45. ^ J. Tyler Faith (2018). "Paleodietary change and its implications for aridity indices derived from δ18O of herbivore tooth enamel". Palaeogeography, Palaeoclimatology, Palaeoecology. 490: 571–578. Bibcode:2018PPP...490..571F. doi:10.1016/j.palaeo.2017.11.045.
  46. ^ Scott A. Blumenthal; Naomi E. Levin; Francis H. Brown; Jean-Philip Brugal; Kendra L. Chritz; Thure E. Cerling (2018). "Diet and evaporation sensitivity in African ungulates: A comment on Faith (2018)". Palaeogeography, Palaeoclimatology, Palaeoecology. 506: 250–251. Bibcode:2018PPP...506..250B. doi:10.1016/j.palaeo.2018.02.022. S2CID 135094022.
  47. ^ J. Tyler Faith (2018). "We need to critically evaluate our assumptions: Reply to Blumenthal et al. (2018)". Palaeogeography, Palaeoclimatology, Palaeoecology. 506: 252–253. Bibcode:2018PPP...506..252F. doi:10.1016/j.palaeo.2018.02.023. S2CID 134698793.
  48. ^ Susanne Cote; John Kingston; Alan Deino; Alisa Winkler; Robert Kityo; Laura MacLatchy (2018). "Evidence for rapid faunal change in the early Miocene of East Africa based on revised biostratigraphic and radiometric dating of Bukwa, Uganda". Journal of Human Evolution. 116: 95–107. Bibcode:2018JHumE.116...95C. doi:10.1016/j.jhevol.2017.12.001. PMID 29477184.
  49. ^ Andrew Du; Zeresenay Alemseged (2018). "Diversity analysis of Plio-Pleistocene large mammal communities in the Omo-Turkana Basin, eastern Africa". Journal of Human Evolution. 124: 25–39. Bibcode:2018JHumE.124...25D. doi:10.1016/j.jhevol.2018.07.004. PMID 30153945. S2CID 52114894.
  50. ^ Justin W. Adams (2018). "Fossil mammals from the Gondolin Dump A ex situ hominin deposits, South Africa". PeerJ. 6: e5393. doi:10.7717/peerj.5393. PMC 6084286. PMID 30123713.
  51. ^ Kevin T. Uno; Florent Rivals; Faysal Bibi; Michael Pante; Jackson Njau; Ignacio de la Torre (2018). "Large mammal diets and paleoecology across the Oldowan–Acheulean transition at Olduvai Gorge, Tanzania from stable isotope and tooth wear analyses". Journal of Human Evolution. 120: 76–91. Bibcode:2018JHumE.120...76U. doi:10.1016/j.jhevol.2018.01.002. hdl:10261/357120. PMID 29752005. S2CID 21663061.
  52. ^ Florent Rivals; Kevin T. Uno; Faysal Bibi; Michael C. Pante; Jackson Njau; Ignacio de la Torre (2018). "Dietary traits of the ungulates from the HWK EE site at Olduvai Gorge (Tanzania): Diachronic changes and seasonality". Journal of Human Evolution. 120: 203–214. Bibcode:2018JHumE.120..203R. doi:10.1016/j.jhevol.2017.08.011. hdl:10261/357105. PMID 28870375. S2CID 35815586.
  53. ^ a b Faysal Bibi; Michael Pante; Antoine Souron; Kathlyn Stewart; Sara Varela; Lars Werdelin; Jean-Renaud Boisserie; Mikael Fortelius; Leslea Hlusko; Jackson Njau; Ignacio de la Torre (2018). "Paleoecology of the Serengeti during the Oldowan-Acheulean transition at Olduvai Gorge, Tanzania: The mammal and fish evidence". Journal of Human Evolution. 120: 48–75. Bibcode:2018JHumE.120...48B. doi:10.1016/j.jhevol.2017.10.009. hdl:10138/303935. PMID 29191415.
  54. ^ Mathias M. Pires; Paulo R. Guimarães; Mauro Galetti; Pedro Jordano (2018). "Pleistocene megafaunal extinctions and the functional loss of long-distance seed-dispersal services". Ecography. 41 (1): 153–163. Bibcode:2018Ecogr..41..153P. doi:10.1111/ecog.03163. S2CID 31921405.
  55. ^ Flavia Strani; Daniel DeMiguel; Fabio Bona; Raffaele Sardella; Italo Biddittu; Luciano Bruni; Adelaide De Castro; Francesco Guadagnoli; Luca Bellucci (2018). "Ungulate dietary adaptations and palaeoecology of the Middle Pleistocene site of Fontana Ranuccio (Anagni, Central Italy)". Palaeogeography, Palaeoclimatology, Palaeoecology. 496: 238–247. Bibcode:2018PPP...496..238S. doi:10.1016/j.palaeo.2018.01.041.
  56. ^ Flavia Strani; Daniel DeMiguel; Luca Bellucci; Raffaele Sardella (2018). "Dietary response of early Pleistocene ungulate communities to the climate oscillations of the Gelasian/Calabrian transition in Central Italy". Palaeogeography, Palaeoclimatology, Palaeoecology. 499: 102–111. Bibcode:2018PPP...499..102S. doi:10.1016/j.palaeo.2018.03.021. S2CID 135037751. Archived from the original on 2020-06-20. Retrieved 2019-08-18.
  57. ^ Jesús Rodríguez; Ana Mateos (2018). "Carrying capacity, carnivoran richness and hominin survival in Europe". Journal of Human Evolution. 118: 72–88. Bibcode:2018JHumE.118...72R. doi:10.1016/j.jhevol.2018.01.004. PMID 29606204.
  58. ^ Zhou Xinying; Yang Jilong; Wang Shiqi; Xiao Guoqiao; Zhao Keliang; Zheng Yan; Shen Hui; Li Xiaoqiang (2018). "Vegetation change and evolutionary response of large mammal fauna during the Mid-Pleistocene Transition in temperate northern East Asia". Palaeogeography, Palaeoclimatology, Palaeoecology. 505: 287–294. Bibcode:2018PPP...505..287Z. doi:10.1016/j.palaeo.2018.06.007. S2CID 134868767.
  59. ^ Dan Zhu; Philippe Ciais; Jinfeng Chang; Gerhard Krinner; Shushi Peng; Nicolas Viovy; Josep Peñuelas; Sergey Zimov (2018). "The large mean body size of mammalian herbivores explains the productivity paradox during the Last Glacial Maximum". Nature Ecology & Evolution. 2 (4): 640–649. Bibcode:2018NatEE...2..640Z. doi:10.1038/s41559-018-0481-y. PMC 5868731. PMID 29483680.
  60. ^ F. Carotenuto; M. Di Febbraro; M. Melchionna; A. Mondanaro; S. Castiglione; C. Serio; L.Rook; A. Loy; M.S. Lima-Ribeiro; J.A.F. Diniz-Filho; P. Raia (2018). "The well-behaved killer: Late Pleistocene humans in Eurasia were significantly associated with living megafauna only". Palaeogeography, Palaeoclimatology, Palaeoecology. 500: 24–32. Bibcode:2018PPP...500...24C. doi:10.1016/j.palaeo.2018.03.036. S2CID 133820001.
  61. ^ J. Tyler Faith; John Rowan; Andrew Du; Paul L. Koch (2018). "Plio-Pleistocene decline of African megaherbivores: No evidence for ancient hominin impacts". Science. 362 (6417): 938–941. Bibcode:2018Sci...362..938F. doi:10.1126/science.aau2728. PMID 30467167. S2CID 53755457.
  62. ^ Yahui Qiu; Hong Ao; Yunxiang Zhang; Peixian Shu; Yongxiang Li; Xingwen Li; Peng Zhang (2018). "Magnetostratigraphic dating of the Linyi Fauna and implications for sequencing the mammalian faunas on the Chinese Loess Plateau". Quaternary Research. 89 (3): 629–644. Bibcode:2018QuRes..89..629Q. doi:10.1017/qua.2017.83. S2CID 135007131.
  63. ^ A. K. Agadjanian; M. V. Shunkov (2018). "Late Pleistocene mammals of the Northwestern Altai: Report 1. Anui Basin". Paleontological Journal. 52 (12): 1450–1460. Bibcode:2018PalJ...52.1450A. doi:10.1134/S0031030118120043. S2CID 92543390.
  64. ^ A. K. Agadjanian; M. V. Shunkov (2018). "Late Pleistocene mammals of the Northwestern Altai: Report 2. Charysh Basin". Paleontological Journal. 52 (12): 1461–1472. Bibcode:2018PalJ...52.1461A. doi:10.1134/S0031030118120055. S2CID 195300731.
  65. ^ Alexandra A. E. van der Geer; George A. Lyras; Philipp Mitteroecker; Ross D. E. MacPhee (2018). "From Jumbo to Dumbo: cranial shape changes in elephants and hippos during phyletic dwarfing". Evolutionary Biology. 45 (3): 303–317. Bibcode:2018EvBio..45..303V. doi:10.1007/s11692-018-9451-1. S2CID 4663435.
  66. ^ Leonardo Santos Avilla; Helena Machado; Herminio Ismael de Araujo-Junior; Dimila Mothe; Alline Rotti; Karoliny de Oliveira; Victoria Maldonado; Ana Maria Graciano Figueiredo; Angela Kinoshita; Oswaldo Baffa (2018). "Pleistocene Equus (Equidae: Mammalia) from northern Brazil: evidence of scavenger behavior by ursids on South American horses". Ameghiniana. 55 (5): 517–530. doi:10.5710/AMGH.05.07.2018.3069. S2CID 134160124.
  67. ^ Jack M. Broughton; Elic M. Weitzel (2018). "Population reconstructions for humans and megafauna suggest mixed causes for North American Pleistocene extinctions". Nature Communications. 9 (1): Article number 5441. Bibcode:2018NatCo...9.5441B. doi:10.1038/s41467-018-07897-1. PMC 6303330. PMID 30575758.
  68. ^ Yoland Savriama; Mia Valtonen; Juhana I. Kammonen; Pasi Rastas; Olli-Pekka Smolander; Annina Lyyski; Teemu J. Häkkinen; Ian J. Corfe; Sylvain Gerber; Isaac Salazar-Ciudad; Lars Paulin; Liisa Holm; Ari Löytynoja; Petri Auvinen; Jukka Jernvall (2018). "Bracketing phenogenotypic limits of mammalian hybridization". Royal Society Open Science. 5 (11): 180903. Bibcode:2018RSOS....580903S. doi:10.1098/rsos.180903. PMC 6281900. PMID 30564397.
  69. ^ Alessandro Marques de Oliveira; Charles Morphy D. Santos (2018). "Functional morphology and paleoecology of Pilosa (Xenarthra, Mammalia) based on a two-dimensional geometric morphometrics study of the humerus". Journal of Morphology. 279 (10): 1455–1467. doi:10.1002/jmor.20882. PMID 30105869. S2CID 51971287.
  70. ^ Luciano Varela; P. Sebastián Tambusso; Santiago J. Patiño; Mariana Di Giacomo; Richard A. Fariña (2018). "Potential distribution of fossil xenarthrans in South America during the late Pleistocene: co-pccurrence and provincialism". Journal of Mammalian Evolution. 25 (4): 539–550. doi:10.1007/s10914-017-9406-9. S2CID 25974749.
  71. ^ Daniela C. Kalthoff; Jeremy L. Green (2018). "Feeding ecology in Oligocene mylodontoid sloths (Mammalia, Xenarthra) as revealed by orthodentine microwear analysis". Journal of Mammalian Evolution. 25 (4): 551–564. doi:10.1007/s10914-017-9405-x. PMC 6209052. PMID 30443148.
  72. ^ Alberto Boscaini; Dawid A. Iurino; Guillaume Billet; Lionel Hautier; Raffaele Sardella; German Tirao; Timothy J. Gaudin; François Pujos (2018). "Phylogenetic and functional implications of the ear region anatomy of Glossotherium robustum (Xenarthra, Mylodontidae) from the Late Pleistocene of Argentina". The Science of Nature. 105 (3–4): Article 28. Bibcode:2018SciNa.105...28B. doi:10.1007/s00114-018-1548-y. hdl:11336/86750. PMID 29589123. S2CID 4700419.
  73. ^ Alberto Boscaini; Dawid A. Iurino; Raffaele Sardella; German Tirao; Timothy J. Gaudin; François Pujos (2018). "Digital cranial endocasts of the extinct sloth Glossotherium robustum (Xenarthra, Mylodontidae) from the late Pleistocene of Argentina: description and comparison with the extant sloths". Journal of Mammalian Evolution. 27 (1): 55–71. doi:10.1007/s10914-018-9441-1. hdl:11336/87295. S2CID 46974585.
  74. ^ Alfredo A. Carlini; Diego Brandoni; Rodolfo Sánchez; Marcelo R. Sánchez-Villagra (2018). "A new Megatheriinae skull (Xenarthra, Tardigrada) from the Pliocene of Northern Venezuela – implications for a giant sloth dispersal to Central and North America". Palaeontologia Electronica. 21 (2): Article number 21.2.16A. doi:10.26879/771. hdl:11336/80208.
  75. ^ P. Sebastián Tambusso; Luciano Varela; H. Gregory McDonald (2018). "Fusion of anterior thoracic vertebrae in Pleistocene ground sloths". Historical Biology: An International Journal of Paleobiology. 32 (2): 244–251. doi:10.1080/08912963.2018.1487419. S2CID 90758938.
  76. ^ Néstor Toledo; Gerardo De Iuliis; Sergio F. Vizcaíno; M. Susana Bargo (2018). "The concept of a pedolateral pes revisited: the giant sloths Megatherium and Eremotherium (Xenarthra, Folivora, Megatheriinae) as a case study". Journal of Mammalian Evolution. 25 (4): 525–537. doi:10.1007/s10914-017-9410-0. hdl:11336/49702. S2CID 8854661. Archived from the original on 2020-06-15. Retrieved 2020-01-22.
  77. ^ Diego Brandoni; Alfredo A. Carlini; Federico Anaya; Phil Gans; Darin A. Croft (2018). "New remains of Megathericulus patagonicus Ameghino, 1904 (Xenarthra, Tardigrada) from the Serravallian (middle Miocene) of Bolivia; chronological and biogeographical implications". Journal of Mammalian Evolution. 25 (3): 327–337. doi:10.1007/s10914-017-9384-y. hdl:11336/40751. S2CID 18176106. Archived from the original on 2023-10-06. Retrieved 2022-06-09.
  78. ^ Federico L. Agnolin; Nicolás R. Chimento; Diego Brandoni; Daniel Boh; Denise H. Campo; Mariano Magnussen; Francisco De Cianni (2018). "New Pleistocene remains of Megatherium filholi Moreno, 1888 (Mammalia, Xenarthra) from the Pampean Region: Implications for the diversity of Megatheriinae of the Quaternary of South America". Neues Jahrbuch für Geologie und Paläontologie - Abhandlungen. 289 (3): 339–348. doi:10.1127/njgpa/2018/0777. hdl:11336/80117. S2CID 134660849.
  79. ^ Eli Amson; Guillaume Billet; Christian de Muizon (2018). "Evolutionary adaptation to aquatic lifestyle in extinct sloths can lead to systemic alteration of bone structure". Proceedings of the Royal Society B: Biological Sciences. 285 (1878): 20180270. doi:10.1098/rspb.2018.0270. PMC 5966604. PMID 29743254.
  80. ^ Luciano Brambilla; Damián A. Ibarra (2018). "The occipital region of late Pleistocene Mylodontidae of Argentina" (PDF). Boletín del Instituto de Fisiografía y Geología. 88: 1–9. Archived (PDF) from the original on 2022-10-09. Retrieved 2019-01-15.
  81. ^ Frédéric Delsuc; Melanie Kuch; Gillian C. Gibb; Jonathan Hughes; Paul Szpak; John Southon; Jacob Enk; Ana T. Duggan; Hendrik N. Poinar (2018). "Resolving the phylogenetic position of Darwin's extinct ground sloth (Mylodon darwinii) using mitogenomic and nuclear exon data". Proceedings of the Royal Society B: Biological Sciences. 285 (1878): 20180214. doi:10.1098/rspb.2018.0214. PMC 5966596. PMID 29769358.
  82. ^ Carlos A. Luna; Ignacio A. Cerda; Alfredo E. Zurita; Romina Gonzalez; M. Cecilia Prieto; Dimila Mothé; Leonardo S. Avilla (2018). "Distinguishing Quaternary glyptodontine cingulates in South America: How informative are juvenile specimens?". Acta Palaeontologica Polonica. 63 (1): 159–170. doi:10.4202/app.00409.2017. hdl:11336/92591.
  83. ^ Pablo Toriño; Daniel Perea (2018). "New contributions to the systematics of the "Plohophorini" (Mammalia, Cingulata, Glyptodontidae) from Uruguay". Journal of South American Earth Sciences. 86: 410–430. Bibcode:2018JSAES..86..410T. doi:10.1016/j.jsames.2018.07.006. S2CID 134481193.
  84. ^ Alfredo Eduardo Zurita; David D. Gillette; Francisco Cuadrelli; Alfredo Armando Carlini (2018). "A tale of two clades: Comparative study of Glyptodon Owen and Glyptotherium Osborn (Xenarthra, Cingulata, Glyptodontidae)". Geobios. 51 (3): 247–258. Bibcode:2018Geobi..51..247Z. doi:10.1016/j.geobios.2018.04.004. hdl:11336/83593. S2CID 134450624.
  85. ^ Martín Zamorano; Gustavo Juan Scillato-Yané; Esteban Soibelzon; Leopoldo Héctor Soibelzon; Ricardo Bonini; Sergio Gabriel Rodriguez (2018). "Hyoid apparatus of Panochthus sp. (Xenarthra; Glyptodontidae) from the Late Pleistocene of the Pampean Region (Argentina). Comparative description and muscle reconstruction". Neues Jahrbuch für Geologie und Paläontologie - Abhandlungen. 288 (2): 205–219. doi:10.1127/njgpa/2018/0733. hdl:11336/97007.
  86. ^ Fábio Cunha Guimarães de Lima; Kleberson de Oliveira Porpino (2018). "Ectoparasitism and infections in the exoskeletons of large fossil cingulates". PLOS ONE. 13 (10): e0205656. Bibcode:2018PLoSO..1305656D. doi:10.1371/journal.pone.0205656. PMC 6193641. PMID 30335796.
  87. ^ Juan C. Fernicola; Andrés Rinderknecht; Washington Jones; Sergio F. Vizcaíno; Kleberson Propino (2018). "A new species of Neoglyptatelus (Mammalia, Xenarthra, Cingulata) from the late Miocene of Uruguay provides new insights on the evolution of the dorsal armor in cingulates". Ameghiniana. 55 (3): 233–252. doi:10.5710/AMGH.02.12.2017.3150. hdl:11336/96801. S2CID 133785414.
  88. ^ a b Ascanio D. Rincón; Andrés Solórzano; H. Gregory McDonald; Marisol Montellano-Ballesteros (2018). "Two new megalonychid sloths (Mammalia: Xenarthra) from the Urumaco Formation (late Miocene), and their phylogenetic affinities". Journal of Systematic Palaeontology. 17 (5): 409–421. doi:10.1080/14772019.2018.1427639. S2CID 90207481.
  89. ^ Sarah R. Stinnesbeck; Eberhard Frey; Wolfgang Stinnesbeck (2018). "New insights on the paleogeographic distribution of the Late Pleistocene ground sloth genus Xibalbaonyx along the Mesoamerican Corridor". Journal of South American Earth Sciences. 85: 108–120. Bibcode:2018JSAES..85..108S. doi:10.1016/j.jsames.2018.05.004. S2CID 134541882.
  90. ^ Rodolphe Tabuce (2018). "New remains of Chambius kasserinensis from the Eocene of Tunisia and evaluation of proposed affinities for Macroscelidea (Mammalia, Afrotheria)". Historical Biology: An International Journal of Paleobiology. 30 (1–2): 251–266. Bibcode:2018HBio...30..251T. doi:10.1080/08912963.2017.1297433. S2CID 90821969.
  91. ^ Matthew J. Mason; Nigel C. Bennett; Martin Pickford (2018). "The middle and inner ears of the Palaeogene golden mole Namachloris: A comparison with extant species". Journal of Morphology. 279 (3): 375–395. doi:10.1002/jmor.20779. hdl:2263/64145. PMID 29205455. S2CID 46876034. Archived from the original on 2020-02-26. Retrieved 2019-08-18.
  92. ^ Daryl P. Domning (2018). "Fossil Sirenia (Mammalia) of the Miocene Chesapeake Group, Eastern United States". Smithsonian Contributions to Paleobiology. 100 (100): 241–265. doi:10.5479/si.1943-6688.100.
  93. ^ Advait M. Jukar; S. Kathleen Lyons; Mark D. Uhen (2018). "A cranial correlate of body mass in proboscideans". Zoological Journal of the Linnean Society. 184 (3): 919–931. doi:10.1093/zoolinnean/zlx108.
  94. ^ William J. Sanders (2018). "Horizontal tooth displacement and premolar occurrence in elephants and other elephantiform proboscideans". Historical Biology: An International Journal of Paleobiology. 30 (1–2): 137–156. Bibcode:2018HBio...30..137S. doi:10.1080/08912963.2017.1297436. S2CID 89904463.
  95. ^ Sayyed Ghyour Abbas; Muhammad Akbar Khan; Muhammad Adeeb Babar; Muhammad Hanif; Muhammad Akhtar (2018). "New materials of Choerolophodon (Proboscidea) from Dhok Pathan Formation of Siwaliks, Pakistan". Vertebrata PalAsiatica. 56 (4): 295–305. doi:10.19615/j.cnki.1000-3118.180103. Archived from the original on 2018-09-29. Retrieved 2018-09-29.
  96. ^ Yan Wu; Tao Deng; Yaowu Hu; Jiao Ma; Xinying Zhou; Limi Mao; Hanwen Zhang; Jie Ye; Shi-Qi Wang (2018). "A grazing Gomphotherium in Middle Miocene Central Asia, 10 million years prior to the origin of the Elephantidae". Scientific Reports. 8 (1): Article number 7640. Bibcode:2018NatSR...8.7640W. doi:10.1038/s41598-018-25909-4. PMC 5956065. PMID 29769581.
  97. ^ Erwin González-Guarda; Alia Petermann-Pichincura; Carlos Tornero; Laura Domingo; Jordi Agustí; Mario Pino; Ana M. Abarzúa; José M. Capriles; Natalia A. Villavicencio; Rafael Labarca; Violeta Tolorza; Paloma Sevilla; Florent Rivals (2018). "Multiproxy evidence for leaf-browsing and closed habitats in extinct proboscideans (Mammalia, Proboscidea) from Central Chile". Proceedings of the National Academy of Sciences of the United States of America. 115 (37): 9258–9263. Bibcode:2018PNAS..115.9258G. doi:10.1073/pnas.1804642115. PMC 6140480. PMID 30150377.
  98. ^ Gregory James Smith; Larisa R.G. Desantis (2018). "Dietary ecology of Pleistocene mammoths and mastodons as inferred from dental microwear textures". Palaeogeography, Palaeoclimatology, Palaeoecology. 492: 10–25. Bibcode:2018PPP...492...10S. doi:10.1016/j.palaeo.2017.11.024.
  99. ^ Hao-Wen Tong; Li Deng; Xi Chen; Bei Zhang; Jun Wen (2018). "Late Pleistocene proboscideans from Yangjiawan caves in Pingxiang of Jiangxi: with discussions on the Stegodon orientalisElephas maximus assemblage". Vertebrata PalAsiatica. 56 (4): 306–326. doi:10.19615/j.cnki.1000-3118.180410.
  100. ^ V.S. Baygusheva; V.V. Titov (2018). "Problems of the taxon Archidiskodon meridionalis gromovi Garutt et Alexejeva, 1964 validity: diagnosis, stratigraphic spreading and paleoecology" (PDF). Proceedings of the Zoological Institute of the Russian Academy of Sciences. 322 (3): 222–240. doi:10.31610/trudyzin/2018.322.3.222. S2CID 134302682. Archived (PDF) from the original on 2018-09-27. Retrieved 2018-09-27.
  101. ^ I.V. Foronova (2018). "Early Quaternary history of the genus Archidiskodon (Proboscidea, Elephantidae) in Western Siberia: to the question of intermediate links in mammoth lineage" (PDF). Proceedings of the Zoological Institute of the Russian Academy of Sciences. 322 (3): 241–258. doi:10.31610/trudyzin/2018.322.3.241. S2CID 131763340. Archived (PDF) from the original on 2018-09-27. Retrieved 2018-09-27.
  102. ^ Sergio Ros-Montoya; Maria Rita Palombo; María Patrocinio Espigares; Paul Palmqvist; Bienvenido Martínez-Navarro (2018). "The mammoth from the archaeo-paleontological site of Huéscar-1: A tile in the puzzling question of the replacement of Mammuthus meridionalis by Mammuthus trogontherii in the late Early Pleistocene of Europe". Quaternary Science Reviews. 197: 336–351. doi:10.1016/j.quascirev.2018.08.017. S2CID 135176392.
  103. ^ Lee Koren; Devorah Matas; Patrícia Pečnerová; Love Dalén; Alexei Tikhonov; M. Thomas P. Gilbert; Katherine E. Wynne-Edwards; Eli Geffen (2018). "Testosterone in ancient hair from an extinct species". Palaeontology. 61 (6): 797–802. Bibcode:2018Palgy..61..797K. doi:10.1111/pala.12391.
  104. ^ Anatoly V. Lozhkin; Patricia M. Anderson (2018). "Another perspective on the age and origin of the Berelyokh mammoth site (northeast Siberia)". Quaternary Research. 89 (2): 459–477. Bibcode:2018QuRes..89..459L. doi:10.1017/qua.2018.3. S2CID 134501307.
  105. ^ Vladimir V. Pitulko; Elena Y. Pavlova; Aleksandr E. Basilyan; Pavel A. Nikolskiy (2019). "Another perspective on the age and origin of the Berelyokh mammoth site—Comment to the paper published by Lozhkin and Anderson, Quaternary Research 89 (2018), 459–477". Quaternary Research. 91 (2): 910–913. Bibcode:2019QuRes..91..910P. doi:10.1017/qua.2018.86.
  106. ^ Anatoly V. Lozhkin; Patricia M. Anderson (2019). "Another perspective on the age and origin of the Berelyokh mammoth site: response to Pitulko et al". Quaternary Research. 91 (2): 914–915. Bibcode:2019QuRes..91..914L. doi:10.1017/qua.2018.97.
  107. ^ Adam Nadachowski; Grzegorz Lipecki; Mateusz Baca; Michał Żmihorski; Jarosław Wilczyński (2018). "Impact of climate and humans on the range dynamics of the woolly mammoth (Mammuthus primigenius) in Europe during MIS 2". Quaternary Research. 90 (3): 439–456. Bibcode:2018QuRes..90..439N. doi:10.1017/qua.2018.54. S2CID 133934898.
  108. ^ Gary Haynes; Janis Klimowicz; Piotr Wojtal (2018). "A comparative study of woolly mammoths from the Gravettian site Kraków Spadzista (Poland), based on estimated shoulder heights, demography, and life conditions". Quaternary Research. 90 (3): 483–502. Bibcode:2018QuRes..90..483H. doi:10.1017/qua.2018.60. S2CID 134507941.
  109. ^ Dorothée G. Drucker; Rhiannon E. Stevens; Mietje Germonpré; Mikhail V. Sablin; Stéphane Péan; Hervé Bocherens (2018). "Collagen stable isotopes provide insights into the end of the mammoth steppe in the central East European plains during the Epigravettian". Quaternary Research. 90 (3): 457–469. Bibcode:2018QuRes..90..457D. doi:10.1017/qua.2018.40. S2CID 133666996. Archived from the original on 2022-06-29. Retrieved 2021-11-02.
  110. ^ N.V. Serdyuk; E.N. Maschenko (2018). "Parasitic diseases of woolly mammoth (Mammuthus primigenius Blumenbach, 1799)" (PDF). Proceedings of the Zoological Institute of the Russian Academy of Sciences. 322 (3): 306–314. doi:10.31610/trudyzin/2018.322.3.306. S2CID 91968871. Archived (PDF) from the original on 2018-09-27. Retrieved 2018-09-27.
  111. ^ José L. Guil-Guerrero; Alexei Tikhonov; Rebeca P. Ramos-Bueno; Semyon Grigoriev; Albert Protopopov; Grigoryi Savvinov; María J. González-Fernández (2018). "Mammoth resources for hominins: from omega-3 fatty acids to cultural objects". Journal of Quaternary Science. 33 (4): 455–463. Bibcode:2018JQS....33..455G. doi:10.1002/jqs.3026. S2CID 134420138.
  112. ^ Eleftheria Palkopoulou; Mark Lipson; Swapan Mallick; Svend Nielsen; Nadin Rohland; Sina Baleka; Emil Karpinski; Atma M. Ivancevic; Thu-Hien To; R. Daniel Kortschak; Joy M. Raison; Zhipeng Qu; Tat-Jun Chin; Kurt W. Alt; Stefan Claesson; Love Dalén; Ross D. E. MacPhee; Harald Meller; Alfred L. Roca; Oliver A. Ryder; David Heiman; Sarah Young; Matthew Breen; Christina Williams; Bronwen L. Aken; Magali Ruffier; Elinor Karlsson; Jeremy Johnson; Federica Di Palma; Jessica Alfoldi; David L. Adelson; Thomas Mailund; Kasper Munch; Kerstin Lindblad-Toh; Michael Hofreiter; Hendrik Poinar; David Reich (2018). "A comprehensive genomic history of extinct and living elephants". Proceedings of the National Academy of Sciences of the United States of America. 115 (11): E2566 – E2574. Bibcode:2018PNAS..115E2566P. doi:10.1073/pnas.1720554115. PMC 5856550. PMID 29483247.
  113. ^ George Theodorou; Yiannis Bassiakos; Evangelos Tsakalos; Evyenia Yiannouli; Petros Maniatis (2018). "The use of CT scans and 3D modeling as a powerful tool to assist fossil vertebrate taxonomy". In Marinos Ioannides; Eleanor Fink; Raffaella Brumana; Petros Patias; Anastasios Doulamis; João Martins; Manolis Wallace (eds.). Digital heritage. Progress in cultural heritage: documentation, preservation, and protection. 7th International Conference, EuroMed 2018, Nicosia, Cyprus, October 29–November 3, 2018, Proceedings, Part I. Springer. pp. 79–89. doi:10.1007/978-3-030-01762-0_7. ISBN 978-3-030-01761-3.
  114. ^ Athanassios Athanassiou; Alexandra A.E. van der Geer; George A. Lyras (2019). "Pleistocene insular Proboscidea of the Eastern Mediterranean: A review and update". Quaternary Science Reviews. 218: 306–321. Bibcode:2019QSRv..218..306A. doi:10.1016/j.quascirev.2019.06.028. S2CID 199107354.
  115. ^ Martin Pickford (2018). "Tenrecoid mandible from Elisabethfeld (Early Miocene) Namibia" (PDF). Communications of the Geological Survey of Namibia. 18: 87–92. Archived (PDF) from the original on 2018-02-18. Retrieved 2018-02-17.
  116. ^ Ester Díaz-Berenguer; Ainara Badiola; Miguel Moreno-Azanza; José Ignacio Canudo (2018). "First adequately-known quadrupedal sirenian from Eurasia (Eocene, Bay of Biscay, Huesca, northeastern Spain)". Scientific Reports. 8 (1): Article number 5127. Bibcode:2018NatSR...8.5127D. doi:10.1038/s41598-018-23355-w. PMC 5865116. PMID 29572454.
  117. ^ Emmanuel Gheerbrant; Arnaud Schmitt; László Kocsis (2018). "Early African fossils elucidate the origin of embrithopod mammals". Current Biology. 28 (13): 2167–2173.e2. Bibcode:2018CBio...28E2167G. doi:10.1016/j.cub.2018.05.032. PMID 30008332. S2CID 51627140. Archived from the original on 2019-04-27. Retrieved 2019-08-18.
  118. ^ Lucila Inés Amador; Norberto Pedro Giannini; Nancy B. Simmons; Virginia Abdala (2018). "Morphology and evolution of sesamoid elements in bats (Mammalia: Chiroptera)". American Museum Novitates (3905): 1–40. doi:10.1206/3905.1. hdl:2246/6905. S2CID 91375855.
  119. ^ Valéria da C. Tavares; Omar M. Warsi; Fernando Balseiro; Carlos A. Mancina; Liliana M. Dávalos (2018). "Out of the Antilles: Fossil phylogenies support reverse colonization of bats to South America". Journal of Biogeography. 45 (4): 859–873. Bibcode:2018JBiog..45..859T. doi:10.1111/jbi.13175.
  120. ^ Kay Van Damme; Petr Benda; Dirk Van Damme; Peter De Geest; Irka Hajdas (2018). "The first vertebrate fossil from Socotra Island (Yemen) is an early Holocene Egyptian fruit bat". Journal of Natural History. 52 (31–32): 2001–2024. Bibcode:2018JNatH..52.2001V. doi:10.1080/00222933.2018.1510996. S2CID 92040903.
  121. ^ Matthew F. Jones; Pauline M. C. Coster; Alexis Licht; Grégoire Métais; Faruk Ocakoğlu; Michael H. Taylor; K. Christopher Beard (2018). "A stem bat (Chiroptera: Palaeochiropterygidae) from the late middle Eocene of northern Anatolia: implications for the dispersal and palaeobiology of early bats". Palaeobiodiversity and Palaeoenvironments. 99 (2): 261–269. doi:10.1007/s12549-018-0338-z. S2CID 135184030.
  122. ^ a b c d e Gregg F. Gunnell; Fredrick K. Manthi (2020). "Pliocene bats (Chiroptera) from Kanapoi, Turkana Basin, Kenya". Journal of Human Evolution. 140: Article 102440. Bibcode:2020JHumE.14002440G. doi:10.1016/j.jhevol.2018.01.001. PMID 29628118. S2CID 206143059.
  123. ^ Lars W. Van Den Hoek Ostende; Delia Van Oijen; Stephen K. Donovan (2018). "A new bat record for the late Pleistocene of Jamaica: Pteronotus trevorjacksoni from the Red Hills Road Cave" (PDF). Caribbean Journal of Earth Science. 50: 31–35. Archived (PDF) from the original on 2018-05-01. Retrieved 2018-04-30.
  124. ^ Suzanne J. Hand; Robin M. D. Beck; Michael Archer; Nancy B. Simmons; Gregg F. Gunnell; R. Paul Scofield; Alan J. D. Tennyson; Vanesa L. De Pietri; Steven W. Salisbury; Trevor H. Worthy (2018). "A new, large-bodied omnivorous bat (Noctilionoidea: Mystacinidae) reveals lost morphological and ecological diversity since the Miocene in New Zealand". Scientific Reports. 8 (1): Article number 235. Bibcode:2018NatSR...8..235H. doi:10.1038/s41598-017-18403-w. PMC 5762892. PMID 29321543.
  125. ^ Bin Bai; Yuan-Qing Wang; Qian Li; Hai-Bing Wang; Fang-Yuan Mao; Yan-Xin Gong; Jin Meng (2018). "Biostratigraphy and diversity of Paleogene perissodactyls from the Erlian Basin of Inner Mongolia, China". American Museum Novitates (3914): 1–60. doi:10.1206/3914.1. hdl:2246/6918. S2CID 85524924.
  126. ^ Christine Böhmer; Gertrud E. Rössner (2018). "Dental paleopathology in fossil rhinoceroses: etiology and implications". Journal of Zoology. 304 (1): 3–12. doi:10.1111/jzo.12518.
  127. ^ A. V. Shpansky; G. G. Boeskorov (2018). "Northernmost record of the Merck's rhinoceros Stephanorhinus kirchbergensis (Jäger) and taxonomic status of Coelodonta jacuticus Russanov (Mammalia, Rhinocerotidae)". Paleontological Journal. 52 (4): 445–462. Bibcode:2018PalJ...52..445S. doi:10.1134/S003103011804010X. S2CID 91447285.
  128. ^ Bin Bai; Yuan-Qing Wang; Jin Meng (2018). "Postcranial morphology of Middle Eocene deperetellid Teleolophus (Perissodactyla, Tapiroidea) from Shara Murun region of the Erlian Basin, Nei Mongol, China". Vertebrata PalAsiatica. 56 (3): 193–215. doi:10.19615/j.cnki.1000-3118.171214. Archived from the original on 2018-07-13. Retrieved 2018-07-13.
  129. ^ He Chen; Shi-Qi Wang; Da-Wei Tao; Xiu-Min Xia; Shan-Qin Chen; Yan Wu (2018). "Implications for Late Miocene diet from Diceros gansuensis: starch granules in tooth calculus". Vertebrata PalAsiatica. 56 (4): 343–353. doi:10.19615/j.cnki.1000-3118.171124.
  130. ^ Hao‑wen Tong; Xi Chen; Bei Zhang (2018). "New postcranial bones of Elasmotherium peii from Shanshenmiaozui in Nihewan basin, Northern China". Quaternaire. 29 (3): 195–204.
  131. ^ Nikos Solounias; Melinda Danowitz; Elizabeth Stachtiaris; Abhilasha Khurana; Marwan Araim; Marc Sayegh; Jessica Natale (2018). "The evolution and anatomy of the horse manus with an emphasis on digit reduction". Royal Society Open Science. 5 (1): 171782. doi:10.1098/rsos.171782. PMC 5792948. PMID 29410871.
  132. ^ Abigail K. Parker; Brianna K. McHorse; Stephanie E. Pierce (2018). "Niche modeling reveals lack of broad-scale habitat partitioning in extinct horses of North America". Palaeogeography, Palaeoclimatology, Palaeoecology. 511: 103–118. Bibcode:2018PPP...511..103P. doi:10.1016/j.palaeo.2018.07.017. S2CID 134625553.
  133. ^ Boyang Sun; Xiaoxiao Zhang; Yan Liu; Raymond L. Bernor (2018). "Sivalhippus ptychodus and Sivalhippus platyodus (Perissodactyla, Mammalia) from the Late Miocene of China". Rivista Italiana di Paleontologia e Stratigrafia. 124 (1): 1–22. doi:10.13130/2039-4942/9523.
  134. ^ M. Soledad Domingo; Enrique Cantero; Isabel García-Real; Manuel J. Chamorro Sancho; David M. Martín Perea; M. Teresa Alberdi; Jorge Morales (2018). "First radiological study of a complete dental ontogeny sequence of an extinct equid: implications for Equidae life history and taphonomy". Scientific Reports. 8 (1): Article number 8507. Bibcode:2018NatSR...8.8507D. doi:10.1038/s41598-018-26817-3. PMC 5981301. PMID 29855587.
  135. ^ Guillem Orlandi-Oliveras; Carmen Nacarino-Meneses; George D. Koufos; Meike Köhler (2018). "Bone histology provides insights into the life history mechanisms underlying dwarfing in hipparionins". Scientific Reports. 8 (1): Article number 17203. Bibcode:2018NatSR...817203O. doi:10.1038/s41598-018-35347-x. PMC 6249282. PMID 30464210.
  136. ^ Youcef Sam (2018). "Révision des Équidés (Mammalia, Perissodactyla) du site pléistocène moyen du lac Karâr (Tlemcen, Algérie)". Geodiversitas. 40 (8): 171–182. doi:10.5252/geodiversitas2018v40a8. S2CID 134498731. Archived from the original on 2018-04-28. Retrieved 2018-04-28.
  137. ^ Víctor Adrián Pérez-Crespo; José Luis Prado; Maria Teresa Alberdi; Joaquín Arroyo-Cabrales (2018). "Stable isotopes and diets of Pleistocene horses from southern North America and South America: similarities and differences". Palaeobiodiversity and Palaeoenvironments. 98 (4): 663–674. Bibcode:2018PdPe...98..663P. doi:10.1007/s12549-018-0330-7. S2CID 134904831.
  138. ^ Michela Leonardi; Francesco Boschin; Konstantinos Giampoudakis; Robert M. Beyer; Mario Krapp; Robin Bendrey; Robert Sommer; Paolo Boscato; Andrea Manica; David Nogues-Bravo; Ludovic Orlando (2018). "Late Quaternary horses in Eurasia in the face of climate and vegetation change". Science Advances. 4 (7): eaar5589. Bibcode:2018SciA....4.5589L. doi:10.1126/sciadv.aar5589. PMC 6059734. PMID 30050986.
  139. ^ Bin Bai; Yuan-Qing Wang; Zhao-Qun Zhang (2018). "The late Eocene hyracodontid perissodactyl Ardynia from Saint Jacques, Inner Mongolia, China and its implications for the potential Eocene-Oligocene boundary". Palaeoworld. 27 (2): 247–257. doi:10.1016/j.palwor.2017.09.001. S2CID 134244589.
  140. ^ Dan-Hui Sun; Yu Li; Tao Deng (2018). "A new species of Chilotherium (Perissodactyla, Rhinocerotidae) from the Late Miocene of Qingyang, Gansu, China". Vertebrata PalAsiatica. 56 (3): 216–228. doi:10.19615/j.cnki.1000-3118.180109. Archived from the original on 2018-07-13. Retrieved 2018-07-13.
  141. ^ a b Bin Bai; Yuan-Qing Wang; Jin Meng (2018). "The divergence and dispersal of early perissodactyls as evidenced by early Eocene equids from Asia". Communications Biology. 1: Article number 115. doi:10.1038/s42003-018-0116-5. PMC 6123789. PMID 30271995.
  142. ^ Shuo Li (2018). "A new species of Brontotheriidae from the Middle Eocene of Junggar Basin, Xinjiang, China". Vertebrata PalAsiatica. 56 (1): 25–44. doi:10.19615/j.cnki.1000-3118.170314. Archived from the original on 2018-01-04. Retrieved 2018-01-03.
  143. ^ Hai-Bing Wang; Bin Bai; Jin Meng; Yuan-Qing Wang (2018). "A new species of Forstercooperia (Perissodactyla: Paraceratheriidae) from northern China with a systematic revision of forstercooperiines". American Museum Novitates (3897): 1–41. doi:10.1206/3897.1. hdl:2246/6854. S2CID 53067383. Archived from the original on 2023-02-05. Retrieved 2021-06-04.
  144. ^ Bo-Yang Sun; Xiu-Xi Wang; Min-Xiao Ji; Li-Bo Pang; Qin-Qin Shi; Su-Kuan Hou; Dan-Hui Sun; Shi-Qi Wang (2018). "Miocene mammalian faunas from Wushan, China and their evolutionary, biochronological, and biogeographic significances". Palaeoworld. 27 (2): 258–270. doi:10.1016/j.palwor.2017.08.001.
  145. ^ Alexander Averianov; Igor Danilov; Wen Chen; Jianhua Jin (2018). "A new brontothere from the Eocene of South China". Acta Palaeontologica Polonica. 63 (1): 189–196. doi:10.4202/app.00431.2017.
  146. ^ Jérémy Tissier; Damien Becker; Vlad Codrea; Loïc Costeur; Cristina Fărcaş; Alexandru Solomon; Marton Venczel; Olivier Maridet (2018). "New data on Amynodontidae (Mammalia, Perissodactyla) from Eastern Europe: Phylogenetic and palaeobiogeographic implications around the Eocene-Oligocene transition". PLOS ONE. 13 (4): e0193774. Bibcode:2018PLoSO..1393774T. doi:10.1371/journal.pone.0193774. PMC 5905962. PMID 29668673.
  147. ^ Raymond L. Bernor; Shiqi Wang; Yan Liu; Yu Chen; Boyang Sun (2018). "Shanxihippus dermatorhinus comb. nov. with comparisons to old world hipparions with specialized nasal apparati". Rivista Italiana di Paleontologia e Stratigrafia. 124 (2): 361–386. doi:10.13130/2039-4942/10202.
  148. ^ Meaghan M. Emery-Wetherell; Edward Byrd Davis (2018). "Dental measurements do not diagnose modern artiodactyl species: Implications for the systematics of Merycoidodontoidea". Palaeontologia Electronica. 21 (2): Article number 21.2.23A. doi:10.26879/748.
  149. ^ Pietro Martini; Denis Geraads (2018). "Camelus thomasi Pomel, 1893 from the Pleistocene type-locality Tighennif (Algeria). Comparisons with modern Camelus". Geodiversitas. 40 (5): 115–134. doi:10.5252/geodiversitas2018v40a5. S2CID 133952148. Archived from the original on 2018-04-28. Retrieved 2018-04-28.
  150. ^ Jennifer L. Bradham; Larisa R.G. DeSantis; Maria Luisa S.P. Jorge; Alexine Keuroghlian (2018). "Dietary variability of extinct tayassuids and modern white-lipped peccaries (Tayassu pecari) as inferred from dental microwear and stable isotope analysis". Palaeogeography, Palaeoclimatology, Palaeoecology. 499: 93–101. Bibcode:2018PPP...499...93B. doi:10.1016/j.palaeo.2018.03.020. S2CID 134099913.
  151. ^ Evan M. Doughty; Steven C. Wallace; Blaine W. Schubert; Lauren M. Lyon (2018). "First occurrence of the enigmatic peccaries Mylohyus elmorei and Prosthennops serus from the Appalachians: latest Hemphillian to Early Blancan of Gray Fossil Site, Tennessee". PeerJ. 6: e5926. doi:10.7717/peerj.5926. PMC 6276594. PMID 30533292.
  152. ^ Ignacio A. Lazagabaster; Juliet Brophy; Oscar Sanisidro; Silvia Pineda-Munoz; Lee Berger (2018). "A new partial cranium of Metridiochoerus (Suidae, Mammalia) from Malapa, South Africa". Journal of African Earth Sciences. 145: 49–52. Bibcode:2018JAfES.145...49L. doi:10.1016/j.jafrearsci.2018.05.005. S2CID 135440980.
  153. ^ Marco Cherin; Leonardo Sorbelli; Marco Crotti; Dawid A. Iurino; Raffaele Sardella; Antoine Souron (2018). "New material of Sus strozzii (Suidae, Mammalia) from the Early Pleistocene of Italy and a phylogenetic analysis of suines". Quaternary Science Reviews. 194: 94–115. Bibcode:2018QSRv..194...94C. doi:10.1016/j.quascirev.2018.06.029. S2CID 134212868.
  154. ^ Olja Toljagić; Kjetil L. Voje; Michael Matschiner; Lee Hsiang Liow; Thomas F. Hansen (2018). "Millions of years behind: Slow adaptation of ruminants to grasslands". Systematic Biology. 67 (1): 145–157. doi:10.1093/sysbio/syx059. hdl:10852/62159. PMID 28637223. S2CID 205327041.
  155. ^ Mariana F. Rossi; Beatriz Mello; Carlos G. Schrago (2018). "Comparative evaluation of macroevolutionary regimes of Ruminantia and selected mammalian lineages". Biological Journal of the Linnean Society. 123 (4): 814–824. doi:10.1093/biolinnean/bly009.
  156. ^ Bastien Mennecart; Adrien de Perthuis; Gertrud E. Rössner; Jonathan A. Guzmán; Aude de Perthuis; Loïc Costeur (2018). "The first French tragulid skull (Mammalia, Ruminantia, Tragulidae) and associated tragulid remains from the Middle Miocene of Contres (Loir-et-Cher, France)". Comptes Rendus Palevol. 17 (3): 189–200. Bibcode:2018CRPal..17..189M. doi:10.1016/j.crpv.2017.08.004.
  157. ^ Roman Croitor; Montserrat Sanz; Joan Daura (2018). "The endemic deer Haploidoceros mediterraneus (Bonifay) (Cervidae, Mammalia) from the Late Pleistocene of Cova del Rinoceront (Iberian Peninsula): origin, ecomorphology, and paleobiology". Historical Biology: An International Journal of Paleobiology. 32 (3): 409–427. doi:10.1080/08912963.2018.1499018. S2CID 92318533.
  158. ^ Alline Rotti; Dimila Mothé; Leonardo dos Santos Avilla; Gina M. Semprebon (2018). "Diet reconstruction for an extinct deer (Cervidae: Cetartiodactyla) from the Quaternary of South America". Palaeogeography, Palaeoclimatology, Palaeoecology. 497: 244–252. Bibcode:2018PPP...497..244R. doi:10.1016/j.palaeo.2018.02.026.
  159. ^ Émilie Berlioz; Dimitris S. Kostopoulos; Cécile Blondel; Gildas Merceron (2018). "Feeding ecology of Eucladoceros ctenoides as a proxy to track regional environmental variations in Europe during the early Pleistocene". Comptes Rendus Palevol. 17 (4–5): 320–332. Bibcode:2018CRPal..17..320B. doi:10.1016/j.crpv.2017.07.002. hdl:10902/29373.
  160. ^ Roman Croitor; Theodor Obada (2018). "On the presence of Late Pleistocene wapiti, Cervus canadensis Erxleben, 1777 (Cervidae, Mammalia) in the Palaeolithic site Climăuți II (Moldova)". Contributions to Zoology. 87 (1): 1–10. doi:10.1163/18759866-08701001.[permanent dead link]
  161. ^ Thekla Pfeiffer-Deml (2018). "The fossil fallow deer Dama geiselana (Cervidae, Mammalia, upgrade to species level) in the context of migration and local extinctions of fallow deer in the Late and Middle Pleistocene in Europe". PalZ. 92 (4): 681–713. Bibcode:2018PalZ...92..681P. doi:10.1007/s12542-018-0417-5. S2CID 134410898.
  162. ^ B. van Geel; J. Sevink; D. Mol; B. W. Langeveld; R. W. J. M. van der Ham; C. J. M. van der Kraan; J. van der Plicht; J. S. Haile; A. Rey-Iglesia; E. D. Lorenzen (2018). "Giant deer (Megaloceros giganteus) diet from Mid-Weichselian deposits under the present North Sea inferred from molar-embedded botanical remains" (PDF). Journal of Quaternary Science. 33 (8): 924–933. Bibcode:2018JQS....33..924V. doi:10.1002/jqs.3069. S2CID 134292692. Archived (PDF) from the original on 2022-05-17. Retrieved 2021-09-03.
  163. ^ Israel M. Sánchez; Jorge Morales; Juan López Cantalapiedra; Victoria Quiralte; Martin Pickford (2018). "Propalaeoryx Stromer 1926 (Ruminantia, Pecora, Giraffomorpha) revisited: systematics and phylogeny of an African palaeomerycoid" (PDF). Communications of the Geological Survey of Namibia. 19: 123–131. Archived (PDF) from the original on 2018-08-21. Retrieved 2018-08-21.
  164. ^ Gildas Merceron; Marc Colyn; Denis Geraads (2018). "Browsing and non-browsing extant and extinct giraffids: Evidence from dental microwear textural analysis" (PDF). Palaeogeography, Palaeoclimatology, Palaeoecology. 505: 128–139. Bibcode:2018PPP...505..128M. doi:10.1016/j.palaeo.2018.05.036. S2CID 73647428. Archived (PDF) from the original on 2019-04-28. Retrieved 2019-08-18.
  165. ^ Charles Helm; Hayley Cawthra; Richard Cowling; Jan De Vynck; Curtis Marean; Richard McCrea; Renee Rust (2018). "Palaeoecology of giraffe tracks in Late Pleistocene aeolianites on the Cape south coast". South African Journal of Science. 114 (1/2): 67–74. doi:10.17159/sajs.2018/20170266.
  166. ^ Ismael Ferrusquía-Villafranca; Víctor Adrián Pérez-Crespo; José E. Ruiz-González; Enrique Martínez-Hernández; Pedro Morales-Puente (2018). "The diet of Leptomeryx sp. from the Late Eocene Yolomécatl Formation, NW Oaxaca, Sierra Madre del Sur Morphotectonic Province, SE México and its palaeoecological significance". Geological Magazine. 155 (1): 203–208. Bibcode:2018GeoM..155..203F. doi:10.1017/S0016756817000747. S2CID 134925122.
  167. ^ Cécile Blondel; John Rowan; Gildas Merceron; Faysal Bibi; Enquye Negash; W. Andrew Barr; Jean-Renaud Boisserie (2018). "Feeding ecology of Tragelaphini (Bovidae) from the Shungura Formation, Omo Valley, Ethiopia: Contribution of dental wear analyses". Palaeogeography, Palaeoclimatology, Palaeoecology. 496: 103–120. Bibcode:2018PPP...496..103B. doi:10.1016/j.palaeo.2018.01.027.
  168. ^ Yikun Li; Qinqin Shi; Shaokun Chen; Tao Deng (2018). ""Gazella" (Mammalia: Bovidae) from the late Miocene Qingyang area, Gansu, China". Palaeontologia Electronica. 21 (2): Article number 21.2.24A. doi:10.26879/838.
  169. ^ Michaela Ecker; Julia A. Lee-Thorp (2018). "The dietary ecology of the extinct springbok Antidorcas bondi". Quaternary International. 495: 136–143. Bibcode:2018QuInt.495..136E. doi:10.1016/j.quaint.2018.09.012. S2CID 134723289.
  170. ^ Jeff M. Martin; Jim I. Mead; Perry S. Barboza (2018). "Bison body size and climate change". Ecology and Evolution. 8 (9): 4564–4574. Bibcode:2018EcoEv...8.4564M. doi:10.1002/ece3.4019. PMC 5938452. PMID 29760897.
  171. ^ Roberto Díaz-Sibaja; Eduardo Jiménez-Hidalgo; Javier Ponce-Saavedra; María Luisa García-Zepeda (2018). "A combined mesowear analysis of Mexican Bison antiquus shows a generalist diet with geographical variation". Journal of Paleontology. 92 (6): 1130–1139. Bibcode:2018JPal...92.1130D. doi:10.1017/jpa.2018.19. S2CID 134956451.
  172. ^ Frances L. Forrest; Thomas W. Plummer; Ryan L. Raaum (2018). "Ecomorphological analysis of bovid mandibles from Laetoli Tanzania using 3D geometric morphometrics: Implications for hominin paleoenvironmental reconstruction". Journal of Human Evolution. 114: 20–34. Bibcode:2018JHumE.114...20F. doi:10.1016/j.jhevol.2017.09.010. PMID 29447759.
  173. ^ Laurent A. F. Frantz; Anna Rudzinski; Abang Mansyursyah Surya Nugraha; Allowen Evin; James Burton; Ardern Hulme-Beaman; Anna Linderholm; Ross Barnett; Rodrigo Vega; Evan K. Irving-Pease; James Haile; Richard Allen; Kristin Leus; Jill Shephard; Mia Hillyer; Sarah Gillemot; Jeroen van den Hurk; Sharron Ogle; Cristina Atofanei; Mark G. Thomas; Friederike Johansson; Abdul Haris Mustari; John Williams; Kusdiantoro Mohamad; Chandramaya Siska Damayanti; Ita Djuwita Wiryadi; Dagmar Obbles; Stephano Mona; Hally Day; Muhammad Yasin; Stefan Meker; Jimmy A. McGuire; Ben J. Evans; Thomas von Rintelen; Simon Y. W. Ho; Jeremy B. Searle; Andrew C. Kitchener; Alastair A. Macdonald; Darren J. Shaw; Robert Hall; Peter Galbusera; Greger Larson (2018). "Synchronous diversification of Sulawesi's iconic artiodactyls driven by recent geological events". Proceedings of the Royal Society B: Biological Sciences. 285 (1876): 20172566. doi:10.1098/rspb.2017.2566. PMC 5904307. PMID 29643207.
  174. ^ a b c d e Marc Godinot; Henri-Pierre Labarrère; Jorg Erfurt; Jens L. Franzen; Brigitte Lange-Badré; France de Lapparent de Broin; Dominique Vidalenc (2018). "Un nouveau gisement à vertébrés éocènes, Rouzilhac (MP 10-11), dans la série molassique d'Issel (Aude, France)". Revue de Paléobiologie, Genève. 37 (1): 141–333.
  175. ^ Bastien Mennecart; Denis Geraads; Nikolai Spassov; Ivan Zagorchev (2018). "Discovery of the oldest European ruminant in the latest Eocene of Bulgaria: Did tectonics influence the diachronic development of the Grande Coupure?" (PDF). Palaeogeography, Palaeoclimatology, Palaeoecology. 498: 1–8. Bibcode:2018PPP...498....1M. doi:10.1016/j.palaeo.2018.01.011. S2CID 134845249. Archived (PDF) from the original on 2020-05-06. Retrieved 2020-09-10.
  176. ^ Bastien Mennecart; Predrag Radović; Zoran Marković (2018). "New data on the earliest European ruminant (Mammalia, Artiodactyla): A revision of the fossil mandible from Rusce in the Pčinja basin (late Eocene, Southeastern Serbia)". Palaeontologia Electronica. 21 (3): Article number 21.3.38. doi:10.26879/883.
  177. ^ a b c Alexandra A.E. van der Geer (2018). "Uniformity in variety: Antler morphology and evolution in a predator-free environment". Palaeontologia Electronica. 21 (1): 1–31. doi:10.26879/834.
  178. ^ Israel M. Sánchez; Jorge Morales; Juan López Cantalapiedra; Victoria Quiralte; Martin Pickford (2018). "Preliminary phylogenetic analysis of the Tragulidae (Mammalia, Cetartiodactyla, Ruminantia) from Arrisdrift: implications for the African Miocene tragulids" (PDF). Communications of the Geological Survey of Namibia. 19: 110–122. Archived (PDF) from the original on 2018-08-21. Retrieved 2018-08-21.
  179. ^ Martin Pickford; Jorge Morales (2018). "A new suoid with tubulidentate, hypselorhizic cheek teeth from the early Miocene of Córcoles, Spain". Spanish Journal of Palaeontology. 33 (2): 321–344. doi:10.7203/sjp.33.2.13606. hdl:10261/230247.
  180. ^ Laureline Scherler; Fabrice Lihoreau; Damien Becker (2018). "To split or not to split Anthracotherium? A phylogeny of Anthracotheriinae (Cetartiodactyla: Hippopotamoidea) and its palaeobiogeographical implications" (PDF). Zoological Journal of the Linnean Society. 185 (2): 487–510. doi:10.1093/zoolinnean/zly052. Archived (PDF) from the original on 2022-07-06. Retrieved 2020-09-10.
  181. ^ a b Roman Croitor (2018). "A description of two new species of the genus Rucervus (Cervidae, Mammalia) from the Early Pleistocene of Southeast Europe, with comments on hominin and South Asian ruminants dispersals". Quaternary. 1 (2): Article 17. Bibcode:2018Quat....1...17C. doi:10.3390/quat1020017.
  182. ^ Dimitris S. Kostopoulos; Juliette Soubise (2018). "Palaeoreas, Majoreas, and Stryfnotherium gen. nov. (Mammalia: Artiodactyla: Bovidae) from the Late Miocene of Greece". Annales de Paléontologie. 104 (3): 231–247. Bibcode:2018AnPal.104..231K. doi:10.1016/j.annpal.2018.04.002. S2CID 134290724.
  183. ^ Ryan M. Bebej; Kathlyn M. Smith (2018). "Lumbar mobility in archaeocetes (Mammalia: Cetacea) and the evolution of aquatic locomotion in the earliest whales". Zoological Journal of the Linnean Society. 182 (3): 695–721. doi:10.1093/zoolinnean/zlx058.
  184. ^ Mickaël J. Mourlam; Maeva J. Orliac (2018). "Protocetid (Cetacea, Artiodactyla) bullae and petrosals from the middle Eocene locality of Kpogamé, Togo: new insights into the early history of cetacean hearing". Journal of Systematic Palaeontology. 16 (8): 621–644. Bibcode:2018JSPal..16..621M. doi:10.1080/14772019.2017.1328378. S2CID 89774296.
  185. ^ Carlos Mauricio Peredo; Julio S. Peredo; Nicholas D. Pyenson (2018). "Convergence on dental simplification in the evolution of whales". Paleobiology. 44 (3): 434–443. Bibcode:2018Pbio...44..434P. doi:10.1017/pab.2018.9. S2CID 90581461.
  186. ^ Morgan Churchill; Jonathan H. Geisler; Brian L. Beatty; Anjali Goswami (2018). "Evolution of cranial telescoping in echolocating whales (Cetacea: Odontoceti)". Evolution. 72 (5): 1092–1108. doi:10.1111/evo.13480. PMID 29624668. S2CID 4656605.
  187. ^ Loïc Costeur; Camille Grohé; Gabriel Aguirre-Fernández; Eric Ekdale; Georg Schulz; Bert Müller; Bastien Mennecart (2018). "The bony labyrinth of toothed whales reflects both phylogeny and habitat preferences". Scientific Reports. 8 (1): Article number 7841. Bibcode:2018NatSR...8.7841C. doi:10.1038/s41598-018-26094-0. PMC 5959912. PMID 29777194.
  188. ^ Robert W. Boessenecker; Jonathan H. Geisler (2018). "New records of the archaic dolphin Agorophius (Mammalia: Cetacea) from the upper Oligocene Chandler Bridge Formation of South Carolina, USA". PeerJ. 6: e5290. doi:10.7717/peerj.5290. PMC 6166619. PMID 30280011.
  189. ^ K. N. Gilbert; L. C. Ivany; M. D. Uhen (2018). "Living fast and dying young: Life history and ecology of a Neogene sperm whale". Journal of Vertebrate Paleontology. 38 (2): e1439038. Bibcode:2018JVPal..38E9038G. doi:10.1080/02724634.2018.1439038. S2CID 89750852.
  190. ^ Benjamin Ramassamy; Olivier Lambert; Alberto Collareta; Mario Urbina; Giovanni Bianucci (2018). "Description of the skeleton of the fossil beaked whale Messapicetus gregarius: searching potential proxies for deep-diving abilities". Fossil Record. 21 (1): 11–32. Bibcode:2018FossR..21...11R. doi:10.5194/fr-21-11-2018. hdl:11568/956055.
  191. ^ R. Ewan Fordyce; Felix G. Marx (2018). "Gigantism precedes filter feeding in baleen whale evolution". Current Biology. 28 (10): 1670–1676.e2. Bibcode:2018CBio...28E1670F. doi:10.1016/j.cub.2018.04.027. PMID 29754903. S2CID 21680283.
  192. ^ K. K. Tarasenko; E. S. Kovalenko; A. A. Kaloyan; K. M. Podurets (2018). "Morphology of the petrosal in Late Miocene baleen whales of northwestern Ciscaucasia". Paleontological Journal. 52 (12): 1440–1444. Bibcode:2018PalJ...52.1440T. doi:10.1134/S0031030118120195. S2CID 91551353.
  193. ^ Yoshihiro Tanaka; Mahito Watanabe (2018). "Geologically old and ontogenetically young Herpetocetus sp. from the late Miocene of Hokkaido, Japan". Journal of Vertebrate Paleontology. 38 (4): (1)–(11). doi:10.1080/02724634.2018.1478842. S2CID 92314005.
  194. ^ Felix G. Marx; Travis Park; Erich M.G. Fitzgerald; Alistair R. Evans (2018). "A Miocene pygmy right whale fossil from Australia". PeerJ. 6: e5025. doi:10.7717/peerj.5025. PMC 6016540. PMID 29942692.
  195. ^ Indira S. Ritsche; Julia M. Fahlke; Frank Wieder; André Hilger; Ingo Manke; Oliver Hampe (2018). "Relationships of cochlear coiling shape and hearing frequencies in cetaceans, and the occurrence of infrasonic hearing in Miocene Mysticeti". Fossil Record. 21 (1): 33–45. Bibcode:2018FossR..21...33R. doi:10.5194/fr-21-33-2018.
  196. ^ Alberto Collareta; Eleonora Regattieri; Giovanni Zanchetta; Olivier Lambert; Rita Catanzariti; Mark Bosselaers; Pablo Covelo; Angelo Varola; Giovanni Bianucci (2018). "New insights on ancient cetacean movement patterns from oxygenisotope analyses of a Mediterranean Pleistocene whale barnacle". Neues Jahrbuch für Geologie und Paläontologie - Abhandlungen. 288 (2): 143–159. doi:10.1127/njgpa/2018/0729.
  197. ^ Mariana Viglino; Mónica R. Buono; Carolina S. Gutstein; Mario A. Cozzuol; José I. Cuitiño (2018). "A new dolphin from the early Miocene of Patagonia, Argentina: Insights into the evolution of Platanistoidea in the Southern Hemisphere". Acta Palaeontologica Polonica. 63 (2): 261–277. doi:10.4202/app.00441.2017. hdl:11336/85548.
  198. ^ Pavel Gol'din (2018). "New Paratethyan dwarf baleen whales mark the origin of cetotheres". PeerJ. 6: e5800. doi:10.7717/peerj.5800. PMC 6193469. PMID 30356949.
  199. ^ L. Barry Albright III; Albert E. Sanders; Jonathan H. Geisler (2018). "An unexpectedly derived odontocete from the Ashley Formation (Upper Rupelian) of South Carolina, U.S.A.". Journal of Vertebrate Paleontology. 38 (4): (1)–(15). Bibcode:2018JVPal..38....1A. doi:10.1080/02724634.2018.1482555. S2CID 92830510.
  200. ^ Toshiyuki Kimura; Yoshikazu Hasegawa; Naoki Kohno (2018). "A new species of the genus Eschrichtius (Cetacea: Mysticeti) from the Early Pleistocene of Japan". Paleontological Research. 22 (1): 1–19. doi:10.2517/2017PR007. S2CID 134494152.
  201. ^ Hiroto Ichishima; Hitoshi Furusawa; Makino Tachibana; Masaichi Kimura (2018). "First monodontid cetacean (Odontoceti, Delphinoidea) from the early Pliocene of the north-western Pacific Ocean". Papers in Palaeontology. 5 (2): 323–342. doi:10.1002/spp2.1244. S2CID 134689324.
  202. ^ Olivier Lambert; Christian de Muizon; Guy Duhamel; Johannes van der Plicht (2018). "Neogene and Quaternary fossil remains of beaked whales (Cetacea, Odontoceti, Ziphiidae) from deep-sea deposits off Crozet and Kerguelen islands, Southern Ocean". Geodiversitas. 40 (6): 135–160. doi:10.5252/geodiversitas2018v40a6. S2CID 134559343. Archived from the original on 2018-03-30. Retrieved 2018-03-29.
  203. ^ Olivier Lambert; Camille Auclair; Cirilo Cauxeiro; Michel Lopez; Sylvain Adnet (2018). "A close relative of the Amazon river dolphin in marine deposits: a new Iniidae from the late Miocene of Angola". PeerJ. 6: e5556. doi:10.7717/peerj.5556. PMC 6139015. PMID 30225172.
  204. ^ Giovanni Bianucci; Giulia Bosio; Elisa Malinverno; Christian de Muizon; Igor M. Villa; Mario Urbina; Olivier Lambert (2018). "A new large squalodelphinid (Cetacea, Odontoceti) from Peru sheds light on the Early Miocene platanistoid disparity and ecology". Royal Society Open Science. 5 (4): 172302. Bibcode:2018RSOS....572302B. doi:10.1098/rsos.172302. PMC 5936943. PMID 29765678.
  205. ^ Carlos Mauricio Peredo; Nicholas D. Pyenson; Christopher D. Marshall; Mark D. Uhen (2018). "Tooth loss precedes the origin of baleen in whales". Current Biology. 28 (24): 3992–4000.e2. Bibcode:2018CBio...28E3992P. doi:10.1016/j.cub.2018.10.047. PMID 30503622. S2CID 54145119.
  206. ^ Carlos Mauricio Peredo; Nicholas D. Pyenson (2018). "Salishicetus meadi, a new aetiocetid from the late Oligocene of Washington State and implications for feeding transitions in early mysticete evolution". Royal Society Open Science. 5 (4): 172336. Bibcode:2018RSOS....572336P. doi:10.1098/rsos.172336. PMC 5936946. PMID 29765681.
  207. ^ Yoshihiro Tanaka; Tatsuro Ando; Hiroshi Sawamura (2018). "A new species of Middle Miocene baleen whale from the Nupinai Group, Hikatagawa Formation of Hokkaido, Japan". PeerJ. 6: e4934. doi:10.7717/peerj.4934. PMC 6025157. PMID 29967715.
  208. ^ Atzcalli Ehécatl Hernández Cisneros (2018). "A new group of late Oligocene mysticetes from México". Palaeontologia Electronica. 21 (1): 1–30. doi:10.26879/746.
  209. ^ Cheng-Hsiu Tsai; R. Ewan Fordyce (2018). "A new archaic baleen whale Toipahautea waitaki (early Late Oligocene, New Zealand) and the origins of crown Mysticeti". Royal Society Open Science. 5 (4): 172453. Bibcode:2018RSOS....572453T. doi:10.1098/rsos.172453. PMC 5936954. PMID 29765689.
  210. ^ Carlos Mauricio Peredo; Mark D. Uhen; Margot D. Nelson (2018). "A new kentriodontid (Cetacea: Odontoceti) from the early Miocene Astoria Formation and a revision of the stem delphinidan family Kentriodontidae". Journal of Vertebrate Paleontology. 38 (2): e1411357. Bibcode:2018JVPal..38E1357P. doi:10.1080/02724634.2017.1411357. S2CID 89965454. Archived from the original on 2023-10-04. Retrieved 2023-01-02.
  211. ^ Mairin Balisi; Xiaoming Wang; Julia Sankey; Jacob Biewer; Dennis Garber (2018). "Fossil canids from the Mehrten Formation, Late Cenozoic of Northern California". Journal of Vertebrate Paleontology. 38 (1): e1405009. Bibcode:2018JVPal..38E5009B. doi:10.1080/02724634.2017.1405009. S2CID 90160835.
  212. ^ Mairin Balisi; Corinna Casey; Blaire Van Valkenburgh (2018). "Dietary specialization is linked to reduced species durations in North American fossil canids". Royal Society Open Science. 5 (4): 171861. Bibcode:2018RSOS....571861B. doi:10.1098/rsos.171861. PMC 5936914. PMID 29765649.
  213. ^ Brian P. Tanis; Larisa R.G. DeSantis; Rebecca C. Terry (2018). "Dental microwear textures across cheek teeth in canids: Implications for dietary studies of extant and extinct canids". Palaeogeography, Palaeoclimatology, Palaeoecology. 508: 129–138. Bibcode:2018PPP...508..129T. doi:10.1016/j.palaeo.2018.07.028. S2CID 134532042.
  214. ^ Xiaoming Wang; Stuart C. White; Mairin Balisi; Jacob Biewer; Julia Sankey; Dennis Garber; Z. Jack Tseng (2018). "First bone-cracking dog coprolites provide new insight into bone consumption in Borophagus and their unique ecological niche". eLife. 7: e34773. doi:10.7554/eLife.34773. PMC 5963924. PMID 29785931.
  215. ^ Alexandra A.E. van der Geer; George A. Lyras; Rebekka Volmer (2018). "Insular dwarfism in canids on Java (Indonesia) and its implication for the environment of Homo erectus during the Early and earliest Middle Pleistocene". Palaeogeography, Palaeoclimatology, Palaeoecology. 507: 168–179. Bibcode:2018PPP...507..168V. doi:10.1016/j.palaeo.2018.07.009. S2CID 134585999.
  216. ^ Jan Zrzavý; Pavel Duda; Jan Robovský; Isabela Okřinová; Věra Pavelková Řičánková (2018). "Phylogeny of the Caninae (Carnivora): Combining morphology, behaviour, genes and fossils". Zoologica Scripta. 47 (4): 373–389. doi:10.1111/zsc.12293. S2CID 90592618.
  217. ^ Saverio Bartolini Lucenti; Lorenzo Rook; Jorge Morales (2018). "Nyctereutes (Mammalia, Carnivora, Canidae) from Layna and the Eurasian raccoon-dogs: an updated revision". Rivista Italiana di Paleontologia e Stratigrafia. 124 (3): 597–616. doi:10.13130/2039-4942/10739.
  218. ^ Tom McCann; Irmgard Amaru; Effi-Laura Drews; Thanushika Gunatilake; Christina Johanna Knauf; Friedrich Rick; Darius Roohnikan; Robin Maximilian Schaumann; Simone Tillmann (2018). "The hunter and the hunted – first description of a jackal-like predator and associated bird and gazelle tracks from the Post-Messinian of the Sorbas Basin, SE Spain". Zeitschrift der Deutschen Gesellschaft für Geowissenschaften. 169 (1): 47–71. doi:10.1127/zdgg/2018/0131.
  219. ^ Qigao Jiangzuo; Jinyi Liu; Jan Wagner; Wei Dong; Jin Chen (2018). "Taxonomical revision of fossil Canis in Middle Pleistocene sites of Zhoukoudian, Beijing, China and a review of fossil records of Canis mosbachensis variabilis in China". Quaternary International. 482: 93–108. Bibcode:2018QuInt.482...93J. doi:10.1016/j.quaint.2018.04.003. S2CID 134288431.
  220. ^ Susumu Tomiya; Julie A. Meachen (2018). "Postcranial diversity and recent ecomorphic impoverishment of North American gray wolves". Biology Letters. 14 (1): 20170613. doi:10.1098/rsbl.2017.0613. PMC 5803591. PMID 29343558.
  221. ^ Beniamino Mecozzi; Saverio Bartolini Lucenti (2018). "The Late Pleistocene Canis lupus (Canidae, Mammalia) from Avetrana (Apulia, Italy): reappraisal and new insights on the European glacial wolves". Italian Journal of Geosciences. 137 (1): 138–150. doi:10.3301/IJG.2017.22.
  222. ^ Máire Ní Leathlobhair; Angela R. Perri; Evan K. Irving-Pease; Kelsey E. Witt; Anna Linderholm; James Haile; Ophelie Lebrasseur; Carly Ameen; Jeffrey Blick; Adam R. Boyko; Selina Brace; Yahaira Nunes Cortes; Susan J. Crockford; Alison Devault; Evangelos A. Dimopoulos; Morley Eldridge; Jacob Enk; Shyam Gopalakrishnan; Kevin Gori; Vaughan Grimes; Eric Guiry; Anders J. Hansen; Ardern Hulme-Beaman; John Johnson; Andrew Kitchen; Aleksei K. Kasparov; Young-Mi Kwon; Pavel A. Nikolskiy; Carlos Peraza Lope; Aurélie Manin; Terrance Martin; Michael Meyer; Kelsey Noack Myers; Mark Omura; Jean-Marie Rouillard; Elena Y. Pavlova; Paul Sciulli; Mikkel-Holger S. Sinding; Andrea Strakova; Varvara V. Ivanova; Christopher Widga; Eske Willerslev; Vladimir V. Pitulko; Ian Barnes; M. Thomas P. Gilbert; Keith M. Dobney; Ripan S. Malhi; Elizabeth P. Murchison; Greger Larson; Laurent A. F. Frantz (2018). "The evolutionary history of dogs in the Americas" (PDF). Science. 361 (6397): 81–85. Bibcode:2018Sci...361...81N. doi:10.1126/science.aao4776. PMC 7116273. PMID 29976825. S2CID 206663458. Archived (PDF) from the original on 2023-06-01. Retrieved 2019-03-02.
  223. ^ Morgane Ollivier; Anne Tresset; Laurent A. F. Frantz; Stéphanie Bréhard; Adrian Bălăşescu; Marjan Mashkour; Adina Boroneanţ; Maud Pionnier-Capitan; Ophélie Lebrasseur; Rose-Marie Arbogast; László Bartosiewicz; Karyne Debue; Rivka Rabinovich; Mikhail V. Sablin; Greger Larson; Catherine Hänni; Christophe Hitte; Jean-Denis Vigne (2018). "Dogs accompanied humans during the Neolithic expansion into Europe". Biology Letters. 14 (10): 20180286. doi:10.1098/rsbl.2018.0286. PMC 6227856. PMID 30333260.
  224. ^ Jane Balme; Sue O'Connor; Stewart Fallon (2018). "New dates on dingo bones from Madura Cave provide oldest firm evidence for arrival of the species in Australia". Scientific Reports. 8 (1): Article number 9933. Bibcode:2018NatSR...8.9933B. doi:10.1038/s41598-018-28324-x. PMC 6053400. PMID 30026564.
  225. ^ Albert Min-Shan Ko; Yingqi Zhang; Melinda A. Yang; Yibo Hu; Peng Cao; Xiaotian Feng; Lizhao Zhang; Fuwen Wei; Qiaomei Fu (2018). "Mitochondrial genome of a 22,000-year-old giant panda from southern China reveals a new panda lineage". Current Biology. 28 (12): R693 – R694. Bibcode:2018CBio...28.R693M. doi:10.1016/j.cub.2018.05.008. PMID 29920259. S2CID 49310493.
  226. ^ Martina L. Steffen; Tara L. Fulton (2018). "On the association of giant short-faced bear (Arctodus simus) and brown bear (Ursus arctos) in late Pleistocene North America". Geobios. 51 (1): 61–74. Bibcode:2018Geobi..51...61S. doi:10.1016/j.geobios.2017.12.001.
  227. ^ Dariusz Nowakowski (2018). "Frequency of appearance of transverse (Harris) lines reflects living conditions of the Pleistocene bear—Ursus ingressus—(Sudety Mts., Poland)". PLOS ONE. 13 (4): e0196342. Bibcode:2018PLoSO..1396342N. doi:10.1371/journal.pone.0196342. PMC 5912778. PMID 29684086.
  228. ^ Marius Robu; Jonathan G. Wynn; Ionuţ C. Mirea; Alexandru Petculescu; Marius Kenesz; Cristina M. Puşcaş; Marius Vlaicu; Erik Trinkaus; Silviu Constantin (2018). "The diverse dietary profiles of MIS 3 cave bears from the Romanian Carpathians: insights from stable isotope (δ13C and δ15N) analysis". Palaeontology. 61 (2): 209–219. Bibcode:2018Palgy..61..209R. doi:10.1111/pala.12338. S2CID 135180213.
  229. ^ Axel Barlow; James A. Cahill; Stefanie Hartmann; Christoph Theunert; Georgios Xenikoudakis; Gloria G. Fortes; Johanna L. A. Paijmans; Gernot Rabeder; Christine Frischauf; Aurora Grandal-d'Anglade; Ana García-Vázquez; Marine Murtskhvaladze; Urmas Saarma; Peeter Anijalg; Tomaž Skrbinšek; Giorgio Bertorelle; Boris Gasparian; Guy Bar-Oz; Ron Pinhasi; Montgomery Slatkin; Love Dalén; Beth Shapiro; Michael Hofreiter (2018). "Partial genomic survival of cave bears in living brown bears". Nature Ecology & Evolution. 2 (10): 1563–1570. Bibcode:2018NatEE...2.1563B. doi:10.1038/s41559-018-0654-8. PMC 6590514. PMID 30150744.
  230. ^ Qigao Jiangzuo; Jan Wagner; Jin Chen; Cuiping Dong; Jianhua Wei; Juan Ning; Jinyi Liu (2018). "Presence of the Middle Pleistocene cave bears in China confirmed – Evidence from Zhoukoudian area". Quaternary Science Reviews. 199: 1–17. Bibcode:2018QSRv..199....1J. doi:10.1016/j.quascirev.2018.09.012. S2CID 134647125.
  231. ^ Kristof Veitschegger; Christian Kolb; Eli Amson; Torsten M. Scheyer; Marcelo R. Sánchez-Villagra (2018). "Palaeohistology and life history evolution in cave bears, Ursus spelaeus sensu lato". PLOS ONE. 13 (11): e0206791. Bibcode:2018PLoSO..1306791V. doi:10.1371/journal.pone.0206791. PMC 6248942. PMID 30462690.
  232. ^ Gennady F. Baryshnikov; Andrei Yu. Puzachenko; Svetlana V. Baryshnikova (2018). "Morphometric analyses of cave bear mandibles (Carnivora, Ursidae)". Revue de Paléobiologie, Genève. 37 (2): 379–393.
  233. ^ Chris J. Law; Graham J. Slater; Rita S. Mehta (2018). "Lineage diversity and size disparity in Musteloidea: Testing patterns of adaptive radiation using molecular and fossil-based methods". Systematic Biology. 67 (1): 127–144. doi:10.1093/sysbio/syx047. PMID 28472434. S2CID 3564396.
  234. ^ Juliana Tarquini; Néstor Toledo; Leopoldo H. Soibelzon; Cecilia C. Morgan (2018). "Body mass estimation for †Cyonasua (Procyonidae, Carnivora) and related taxa based on postcranial skeleton". Historical Biology: An International Journal of Paleobiology. 30 (4): 496–506. Bibcode:2018HBio...30..496T. doi:10.1080/08912963.2017.1295042. hdl:11336/49670. S2CID 90408657.
  235. ^ Damián Ruiz-Ramoni; Ascanio Rincón; Marisol Montellano-Ballesteros (2018). "Evidencias del origen de Nasua y Procyon (Procyonidae: Carnivora) en América del Sur". Revista Brasileira de Paleontologia. 21 (1): 87–94. doi:10.4072/rbp.2018.1.07.
  236. ^ Jonathan J. Calede; Winifred A. Kehl; Edward B. Davis (2018). "Craniodental morphology and diet of Leptarctus oregonensis (Mammalia, Carnivora, Mustelidae) from the Mascall Formation (Miocene) of central Oregon". Journal of Paleontology. 92 (2): 289–304. Bibcode:2018JPal...92..289C. doi:10.1017/jpa.2017.78. S2CID 89876488.
  237. ^ A. V. Lavrov; K. K. Tarasenko; A. N. Vlasenko (2018). "Semantor macrurus Orlov, 1931 (Carnivora, Mustelidae): morphology of the hind limb and a new view on its paleobiology". Paleontological Journal. 52 (13): 1637–1646. Bibcode:2018PalJ...52.1637L. doi:10.1134/S0031030118130087. S2CID 91618237.
  238. ^ Alberto Valenciano; Juan Abella; David M. Alba; Josep M. Robles; María A. Álvarez-Sierra; Jorge Morales (2018). "New early Miocene material of Iberictis, the oldest member of the wolverine lineage (Carnivora, Mustelidae, Guloninae)". Journal of Mammalian Evolution. 27 (1): 73–93. doi:10.1007/s10914-018-9445-x. S2CID 51891587.
  239. ^ Robert W. Boessenecker (2018). "A Middle Pleistocene Sea Otter from Northern California and the Antiquity of Enhydra in the Pacific Basin". Journal of Mammalian Evolution. 25 (1): 27–35. doi:10.1007/s10914-016-9373-6. S2CID 46794472.
  240. ^ Ashley W. Poust; Robert W. Boessenecker (2018). "Expanding the geographic and geochronologic range of early pinnipeds: New specimens of Enaliarctos from Northern California and Oregon". Acta Palaeontologica Polonica. 63 (1): 25–40. doi:10.4202/app.00399.2017.
  241. ^ David P. Hocking; Felix G. Marx; Renae Sattler; Robert N. Harris; Tahlia I. Pollock; Karina J. Sorrell; Erich M. G. Fitzgerald; Matthew R. McCurry; Alistair R. Evans (2018). "Clawed forelimbs allow northern seals to eat like their ancient ancestors". Royal Society Open Science. 5 (4): 172393. Bibcode:2018RSOS....572393H. doi:10.1098/rsos.172393. PMC 5936949. PMID 29765684.
  242. ^ S. J. Rahmat; I. A. Koretsky (2018). "Mandibular morphology of the Mid-Miocene seal Devinophoca claytoni (Carnivora, Phocidae, Devinophocinae)". Vestnik Zoologii. 52 (6): 509–520. doi:10.2478/vzoo-2018-0052. S2CID 91389532.
  243. ^ Leonard Dewaele; Olivier Lambert; Stephen Louwye (2018). "A late surviving Pliocene seal from high latitudes of the North Atlantic realm: the latest monachine seal on the southern margin of the North Sea". PeerJ. 6: e5734. doi:10.7717/peerj.5734. PMC 6183512. PMID 30324020.
  244. ^ Sulman Rahmat; Fernando Muñiz; Antonio Toscano; Raúl Esperante; Irina Koretsky (2018). "First European record of Homiphoca (Phocidae: Monachinae: Lobodontini) and its bearing on the paleobiogeography of the genus". Historical Biology: An International Journal of Paleobiology. 32 (4): 561–569. doi:10.1080/08912963.2018.1507030. S2CID 92838053.
  245. ^ Jorge Velez-Juarbe (2018). "New data on the early odobenid Neotherium mirum Kellogg, 1931, and other pinniped remains from the Sharktooth Hill Bonebed, California". Journal of Vertebrate Paleontology. 38 (4): (1)–(14). doi:10.1080/02724634.2018.1481080. S2CID 91544891.
  246. ^ Sarah J. Boessenecker; Robert W. Boessenecker; Jonathan H. Geisler (2018). "Youngest record of the extinct walrus Ontocetus emmonsi from the Early Pleistocene of South Carolina and a review of North Atlantic walrus biochronology". Acta Palaeontologica Polonica. 63 (2): 279–286. doi:10.4202/app.00454.2018.
  247. ^ Jim Williams; Peter Andrews; Sara García-Morato; Paola Villa; Yolanda Fernández-Jalvo (2018). "Hyena as a predator of small mammals? Taphonomic analysis from the site of Bois Roche, France". Paleobiology. 44 (3): 511–529. Bibcode:2018Pbio...44..511W. doi:10.1017/pab.2018.13. S2CID 90343101.
  248. ^ Vlasta Petrovič; Martin Sabol; Juraj Šurka; Martin Pyszko; Ladislav Stehlík (2018). "External brain morphology of juvenile cave hyena (Crocuta crocuta spelaea) from the Jasovská jaskyňa Cave (Slovakia) revealed by X-ray computed tomography". Acta Geologica Slovaca. 10 (2): 133–142. Archived from the original on 2018-12-31. Retrieved 2018-12-31.
  249. ^ Nicolás R. Chimento; Alejandro Dondas (2018). "First Record of Puma concolor (Mammalia, Felidae) in the Early-Middle Pleistocene of South America". Journal of Mammalian Evolution. 25 (3): 381–389. doi:10.1007/s10914-017-9385-x. hdl:11336/48212. S2CID 16249074.
  250. ^ Camille Grohé; Beatrice Lee; John J. Flynn (2018). "Recent inner ear specialization for high-speed hunting in cheetahs". Scientific Reports. 8 (1): Article number 2301. Bibcode:2018NatSR...8.2301G. doi:10.1038/s41598-018-20198-3. PMC 5797172. PMID 29396425.
  251. ^ Marco Cherin; Dawid A. Iurino; Marco Zanatta; Vincent Fernandez; Alessandro Paciaroni; Caterina Petrillo; Roberto Rettori; Raffaele Sardella (2018). "Synchrotron radiation reveals the identity of the large felid from Monte Argentario (Early Pleistocene, Italy)". Scientific Reports. 8 (1): Article number 8338. Bibcode:2018NatSR...8.8338C. doi:10.1038/s41598-018-26698-6. PMC 5974229. PMID 29844540.
  252. ^ Martin Sabol; Juraj Gullár; Ján Horvát (2018). "Montane record of the late Pleistocene Panthera spelaea (Goldfuss, 1810) from the Západné Tatry Mountains (northern Slovakia)". Journal of Vertebrate Paleontology. 38 (3): e1467921. Bibcode:2018JVPal..38E7921S. doi:10.1080/02724634.2018.1467921. S2CID 90751857.
  253. ^ D. O. Gimranov; V. G. Kotov; M. M. Rumyantsev; V. I. Silaev; A. G. Yakovlev; T. I. Yakovleva; N. V. Zelenkov; M. V. Sotnikova; M. M. Devyashin; N. A. Plasteeva; N. E. Zaretskaya; I. M. Nurmukhametov; N. G. Smirnov; P. A. Kosintsev (2018). "A mass burial of fossil lions (Carnivora, Felidae, Panthera (Leo) ex gr. fossilis-spelaea) from Eurasia". Doklady Biological Sciences. 482 (1): 191–193. doi:10.1134/S0012496618050046. PMID 30402757. S2CID 53228473.
  254. ^ Fredrick K. Manthi; Francis H. Brown; Michael J. Plavcan; Lars Werdelin (2018). "Gigantic lion, Panthera leo, from the Pleistocene of Natodomeri, eastern Africa". Journal of Paleontology. 92 (2): 305–312. Bibcode:2018JPal...92..305M. doi:10.1017/jpa.2017.68. S2CID 34070489.
  255. ^ Johanna L. A. Paijmans; Axel Barlow; Daniel W. Förster; Kirstin Henneberger; Matthias Meyer; Birgit Nickel; Doris Nagel; Rasmus Worsøe Havmøller; Gennady F. Baryshnikov; Ulrich Joger; Wilfried Rosendahl; Michael Hofreiter (2018). "Historical biogeography of the leopard (Panthera pardus) and its extinct Eurasian populations". BMC Evolutionary Biology. 18 (1): 156. Bibcode:2018BMCEE..18..156P. doi:10.1186/s12862-018-1268-0. PMC 6198532. PMID 30348080.
  256. ^ Sergio Gabriel Rodriguez; Cecilia Méndez; Esteban Soibelzon; Leopoldo Héctor Soibelzon; Silvina Contreras; Juan Friedrichs; Carlos Luna; Alfredo Eduardo Zurita (2018). "Panthera onca (Carnivora, Felidae) in the late Pleistocene-early Holocene of northern Argentina". Neues Jahrbuch für Geologie und Paläontologie - Abhandlungen. 289 (2): 177–187. doi:10.1127/njgpa/2018/0758. hdl:11336/92588. S2CID 134297042.
  257. ^ Paolo Piras; Daniele Silvestro; Francesco Carotenuto; Silvia Castiglione; Anastassios Kotsakis; Leonardo Maiorino; Marina Melchionna; Alessandro Mondanaro; Gabriele Sansalone (2018). "Evolution of the sabertooth mandible: A deadly ecomorphological specialization". Palaeogeography, Palaeoclimatology, Palaeoecology. 496: 166–174. Bibcode:2018PPP...496..166P. doi:10.1016/j.palaeo.2018.01.034. hdl:2158/1268434.
  258. ^ Tomohiro Harano; Nobuyuki Kutsukake (2018). "Directional selection in the evolution of elongated upper canines in clouded leopards and sabre-toothed cats". Journal of Evolutionary Biology. 31 (9): 1268–1283. doi:10.1111/jeb.13309. PMID 29904973. S2CID 49208818.
  259. ^ I. A. Vislobokova (2018). "On a new find of Megantereon (Carnivora, Felidae, Machairodontinae) from the Early Pleistocene of Trlica (Montenegro, the central Balkans)". Paleontological Journal. 52 (12): 1445–1449. Bibcode:2018PalJ...52.1445V. doi:10.1134/S0031030118120201. S2CID 92543210.
  260. ^ Aldo Manzuetti; Daniel Perea; Martín Ubilla; Andrés Rinderknecht (2018). "First record of Smilodon fatalis Leidy, 1868 (Felidae, Machairodontinae) in the extra-Andean region of South America (late Pleistocene, Sopas Formation), Uruguay: Taxonomic and paleobiogeographic implications". Quaternary Science Reviews. 180: 57–62. Bibcode:2018QSRv..180...57M. doi:10.1016/j.quascirev.2017.11.024.
  261. ^ Borja Figueirido; Stephan Lautenschlager; Alejandro Pérez-Ramos; Blaire Van Valkenburgh (2018). "Distinct predatory behaviors in scimitar- and dirk-toothed sabertooth cats". Current Biology. 28 (20): 3260–3266.e3. Bibcode:2018CBio...28E3260F. doi:10.1016/j.cub.2018.08.012. hdl:10630/29727. PMID 30293717. S2CID 52929593.
  262. ^ Robert W. Boessenecker; Morgan Churchill (2018). "The last of the desmatophocid seals: a new species of Allodesmus from the upper Miocene of Washington, USA, and a revision of the taxonomy of Desmatophocidae". Zoological Journal of the Linnean Society. 184 (1): 211–235. doi:10.1093/zoolinnean/zlx098.
  263. ^ Wataru Tonomori; Hiroshi Sawamura; Tamaki Sato; Naoki Kohno (2018). "A new Miocene pinniped Allodesmus (Mammalia: Carnivora) from Hokkaido, northern Japan". Royal Society Open Science. 5 (5): 172440. Bibcode:2018RSOS....572440T. doi:10.1098/rsos.172440. PMC 5990790. PMID 29892431.
  264. ^ a b Leonard Dewaele; Carlos Mauricio Peredo; Pjotr Meyvisch; Stephen Louwye (2018). "Diversity of late Neogene Monachinae (Carnivora, Phocidae) from the North Atlantic, with the description of two new species". Royal Society Open Science. 5 (3): 172437. Bibcode:2018RSOS....572437D. doi:10.1098/rsos.172437. PMC 5882749. PMID 29657825.
  265. ^ Francesco Maria Angelici; Lorenzo Rossi (2018). "A new subspecies of grey wolf (Carnivora, Canidae), recently extinct, from Sicily, Italy" (PDF). Bollettino del Museo Civico di Storia Naturale di Verona. Botanica Zoologia. 42: 3–15.
  266. ^ Jean-Baptiste Fourvel (2018). "Civettictis braini nov. sp. (Mammalia: Carnivora), a new viverrid from the hominin-bearing site of Kromdraai (Gauteng, South Africa)". Comptes Rendus Palevol. 17 (6): 366–377. Bibcode:2018CRPal..17..366F. doi:10.1016/j.crpv.2017.11.005.
  267. ^ a b Lorenzo Rook; Saverio Bartolini Lucenti; Caterinella Tuveri; Marisa Arca (2018). "Mustelids (Carnivora, Mammalia) from Monte Tuttavista fissure fillings (Early and Middle Pleistocene; Orosei, Sardinia): Taxonomy and evolution of the insular Sardinian Galictini". Quaternary Science Reviews. 197: 209–223. Bibcode:2018QSRv..197..209R. doi:10.1016/j.quascirev.2018.08.022. S2CID 134162908.
  268. ^ a b Leonard Dewaele; Olivier Lambert; Stephen Louwye (2018). "A critical revision of the fossil record, stratigraphy and diversity of the Neogene seal genus Monotherium (Carnivora, Phocidae)". Royal Society Open Science. 5 (5): 171669. Bibcode:2018RSOS....571669D. doi:10.1098/rsos.171669. PMC 5990722. PMID 29892365.
  269. ^ Joshua X. Samuels; Keila E. Bredehoeft; Steven C. Wallace (2018). "A new species of Gulo from the Early Pliocene Gray Fossil Site (Eastern United States); rethinking the evolution of wolverines". PeerJ. 6: e4648. doi:10.7717/peerj.4648. PMC 5910791. PMID 29682423.
  270. ^ a b Brent Adrian; Lars Werdelin; Aryeh Grossman (2018). "New Miocene Carnivora (Mammalia) from Moruorot and Kalodirr, Kenya". Palaeontologia Electronica. 21 (1): Article number 21.1.10A. doi:10.26879/778.
  271. ^ Saverio Bartolini Lucenti (2018). "Revising the species "Mustela" ardea Gervais, 1848–1852 (Mammalia, Mustelidae): Martellictis gen. nov. and the systematics of the fossil "Galictinae" of Eurasia". Comptes Rendus Palevol. 17 (8): 522–535. Bibcode:2018CRPal..17..522B. doi:10.1016/j.crpv.2018.02.003.
  272. ^ Qi-Gao Jiangzuo; Jin-Yi Liu; Jan Wagner; Jin Chen (2018). "Taxonomical revision of "Arctonyx" fossil remains from the Liucheng Gigantopithecus Cave (South China) by means of morphotype and morphometrics, and a review of Late Pliocene and Early Pleistocene Meles fossil records in China". Palaeoworld. 27 (2): 282–300. doi:10.1016/j.palwor.2017.12.001. S2CID 134851852.
  273. ^ Jorge Velez-Juarbe; Fernando M. Salinas-Márquez (2018). "A dwarf walrus from the Miocene of Baja California Sur, Mexico". Royal Society Open Science. 5 (8): 180423. doi:10.1098/rsos.180423. PMC 6124023. PMID 30225030.
  274. ^ a b c Laura G. Emmert; Rachel A. Short (2018). "Three new procyonids (Mammalia, Carnivora) from the Blancan of Florida" (PDF). Bulletin of the Florida Museum of Natural History. 55 (8): 157–173. doi:10.58782/flmnh.odzx4218. Archived (PDF) from the original on 2018-05-24. Retrieved 2018-05-23.
  275. ^ Sarah R. Stinnesbeck; Wolfgang Stinnesbeck; Eberhard Frey; Jerónimo Avilés Olguín; Carmen Rojas Sandoval; Adriana Velázquez Morlet; Arturo H. González (2020). "Panthera balamoides and other Pleistocene felids from the submerged caves of Tulum, Quintana Roo, Mexico". Historical Biology: An International Journal of Paleobiology. 32 (7): 930–939. Bibcode:2020HBio...32..930S. doi:10.1080/08912963.2018.1556649. S2CID 92328512.
  276. ^ Louis de Bonis; Stéphane Peigné; Hassane Taisso Mackaye; Andossa Likius; Patrick Vignaud; Michel Brunet (2018). "New sabre toothed Felidae (Carnivora, Mammalia) in the hominid-bearing sites of Toros Menalla (late Miocene, Chad)". Geodiversitas. 40 (3): 69–86. doi:10.5252/geodiversitas2018v40a3. S2CID 134769588. Archived from the original on 2018-02-17. Retrieved 2018-02-16.
  277. ^ Isaac Magallanes; James F. Parham; Gabriel-Philip Santos; Jorge Velez-Juarbe (2018). "A new tuskless walrus from the Miocene of Orange County, California, with comments on the diversity and taxonomy of odobenids". PeerJ. 6: e5708. doi:10.7717/peerj.5708. PMC 6188011. PMID 30345169.
  278. ^ Fernando Blanco; Ana Rosa Gómez Cano; Juan L. Cantalapiedra; M. Soledad Domingo; Laura Domingo; Iris Menéndez; Lawrence J. Flynn; Manuel Hernández Fernández (2018). "Differential responses of Miocene rodent metacommunities to global climatic changes were mediated by environmental context". Scientific Reports. 8 (1): Article number 2502. Bibcode:2018NatSR...8.2502B. doi:10.1038/s41598-018-20900-5. PMC 5802738. PMID 29410503.
  279. ^ Siobhán B. Cooke; Brooke E. Crowley (2018). "Deciphering the isotopic niches of now-extinct Hispaniolan rodents". Journal of Vertebrate Paleontology. 38 (5): e1510414. Bibcode:2018JVPal..38E0414C. doi:10.1080/02724634.2018.1510414. S2CID 92486564.
  280. ^ Łucja Fostowicz-Frelik; Qian Li; Xijun Ni (2018). "Oldest ctenodactyloid tarsals from the Eocene of China and evolution of locomotor adaptations in early rodents". BMC Evolutionary Biology. 18 (1): 150. Bibcode:2018BMCEE..18..150F. doi:10.1186/s12862-018-1259-1. PMC 6172738. PMID 30286712.
  281. ^ Andrés Rinderknecht; Enrique Bostelmann; Martín Ubilla (2018). "Making a giant rodent: cranial anatomy and ontogenetic development in the genus Isostylomys (Mammalia, Hystricognathi, Dinomyidae)". Journal of Systematic Palaeontology. 16 (3): 245–261. Bibcode:2018JSPal..16..245R. doi:10.1080/14772019.2017.1285360. S2CID 90400618.
  282. ^ Leonardo Kerber; Elver Luiz Mayer; Anny Caroliny Gomes; Norma Nasif (2018). "On the morphological, taxonomic, and phylogenetic status of South American Quaternary dinomyid rodents (Rodentia: Dinomyidae)". PalZ. 94 (1): 167–178. doi:10.1007/s12542-018-0435-3. S2CID 91735420.
  283. ^ Adriana M. Candela; Nahuel A. Muñoz; César M. García-Esponda (2018). "Paleobiology of the basal hydrochoerine Cardiomys Ameghino, 1885 (Rodentia, Caviomorpha, late Miocene, South America) as inferred from its postcranial anatomy". Journal of Paleontology. 92 (5): 911–919. Bibcode:2018JPal...92..911C. doi:10.1017/jpa.2018.12. hdl:11336/100191. S2CID 135148808.
  284. ^ Diego H. Verzi; A. Itatí Olivares; Patricia Hadler; Juan C. Castro; Eduardo P. Tonni (2018). "Occurrence of Dicolpomys (Echimyidae) in the late Holocene of Argentina: The most recently extinct South American caviomorph genus". Quaternary International. 490: 123–131. Bibcode:2018QuInt.490..123V. doi:10.1016/j.quaint.2018.04.041. hdl:11336/100017. S2CID 134395211.
  285. ^ Lazaro W. Viñola Lopez; Orlando H. Garrido; Alberto Bermúdez (2018). "Notes on Mesocapromys sanfelipensis (Rodentia: Capromyidae) from Cuba". Zootaxa. 4410 (1): 164–176. doi:10.11646/zootaxa.4410.1.9. PMID 29690162.
  286. ^ Luciano L. Rasia; Adriana M. Candela (2018). "Reappraisal of the giant caviomorph rodent Phoberomys burmeisteri (Ameghino, 1886) from the late Miocene of northeastern Argentina, and the phylogeny and diversity of Neoepiblemidae". Historical Biology: An International Journal of Paleobiology. 30 (4): 486–495. Bibcode:2018HBio...30..486R. doi:10.1080/08912963.2017.1294168. hdl:11336/56417. S2CID 90381892. Archived from the original on 2022-10-13. Retrieved 2021-01-11.
  287. ^ Raúl I. Vezzosi; Leonardo Kerber (2018). "The southernmost record of a large erethizontid rodent (Hystricomorpha: Erethizontoidea) in the Pleistocene of South America: Biogeographic and paleoenvironmental implications". Journal of South American Earth Sciences. 82: 76–90. Bibcode:2018JSAES..82...76V. doi:10.1016/j.jsames.2017.12.015. hdl:11336/80120.
  288. ^ Maxim V. Sinitsa (2018). "Phylogenetic position of Sinotamias and the early evolution of Marmotini (Rodentia, Sciuridae, Xerinae)". Journal of Vertebrate Paleontology. 38 (1): e1419251. Bibcode:2018JVPal..38E9251S. doi:10.1080/02724634.2017.1419251. S2CID 89877974.
  289. ^ Jonathan J. M. Calede; John D. Orcutt; Winifred A. Kehl; Bill D. Richards (2018). "The first tetrapod from the mid-Miocene Clarkia lagerstätte (Idaho, USA)". PeerJ. 6: e4880. doi:10.7717/peerj.4880. PMC 5995101. PMID 29900070.
  290. ^ Isaac Casanovas-Vilar; Joan Garcia-Porta; Josep Fortuny; Óscar Sanisidro; Jérôme Prieto; Marina Querejeta; Sergio Llácer; Josep M. Robles; Federico Bernardini; David M. Alba (2018). "Oldest skeleton of a fossil flying squirrel casts new light on the phylogeny of the group". eLife. 7: e39270. doi:10.7554/eLife.39270. PMC 6177260. PMID 30296996.
  291. ^ Ornella C. Bertrand; Farrah Amador-Mughal; Madlen M. Lang; Mary T. Silcox (2018). "Virtual endocasts of fossil Sciuroidea: brain size reduction in the evolution of fossoriality". Palaeontology. 61 (6): 919–948. Bibcode:2018Palgy..61..919B. doi:10.1111/pala.12378. S2CID 134358182.
  292. ^ Dariusz Nowakowski; Leonid Rekovets; Oleksandr Kovalchuk; Edward Pawlina; Vitalii Demeshkant (2018). "Enamel ultrastructure of molars in †Anomalomys gaillardi and some spalacid taxa (Rodentia, Mammalia)". Palaeontologia Electronica. 21 (2): Article number 21.2.18A. doi:10.26879/846.
  293. ^ Ulyses F.J. Pardiñas; Franck Barbière (2018). "The Pleistocene record attributed to the cricetid genus Nectomys (Rodentia, Sigmodontinae): unexpected connections". Mammalia. 82 (2): 201–206. doi:10.1515/mammalia-2017-0020. hdl:11336/62238. S2CID 90159000.
  294. ^ Lourdes Valdez; Guilermo D'Elía (2018). "Local persistence of Mann's soft-haired mouse Abrothrix manni (Rodentia, Sigmodontinae) during Quaternary glaciations in southern Chile". PeerJ. 6: e6130. doi:10.7717/peerj.6130. PMC 6302793. PMID 30588409.
  295. ^ Blanca Moncunill-Solé; Xavier Jordana; Meike Köhler (2018). "Where did Mikrotia magna originate? Drawing ecogeographical inferences from body mass reconstructions". Geobios. 51 (4): 359–366. Bibcode:2018Geobi..51..359M. doi:10.1016/j.geobios.2018.06.006. S2CID 135031316.
  296. ^ Tatiana Aghová; Yuri Kimura; Josef Bryja; Gauthier Dobigny; Laurent Granjon; Gael J. Kergoat (2018). "Fossils know it best: Using a new set of fossil calibrations to improve the temporal phylogenetic framework of murid rodents (Rodentia: Muridae)" (PDF). Molecular Phylogenetics and Evolution. 128: 98–111. Bibcode:2018MolPE.128...98A. doi:10.1016/j.ympev.2018.07.017. PMID 30030180. S2CID 51705750.
  297. ^ a b Qiang Li; Thomas A. Stidham; Xijun Ni; Lüzhou Li (2018). "Two new Pliocene hamsters (Cricetidae, Rodentia) from southwestern Tibet (China), and their implications for rodent dispersal 'into Tibet'". Journal of Vertebrate Paleontology. 37 (6): e1403443. doi:10.1080/02724634.2017.1403443. S2CID 90488470.
  298. ^ Qian Li (2018). "Additional cricetid and dipodid rodent material from the Erden Obo section, Erlian Basin (Nei Mongol, China) and its biochronological implications". Palaeoworld. 27 (4): 490–505. doi:10.1016/j.palwor.2018.09.003. S2CID 134516175.
  299. ^ Julien Louys; Sue O'Connor; Mahirta; Pennilyn Higgins; Stuart Hawkins; Tim Maloney (2018). "New genus and species of giant rat from Alor Island, Indonesia". Journal of Asia-Pacific Biodiversity. 11 (4): 503–510. doi:10.1016/j.japb.2018.08.005. hdl:10072/381948.
  300. ^ a b Hans de Bruijn; Zoran Marković; Wilma Wessels; Andrew A. van de Weerd (2018). "Pappocricetodontinae (Rodentia, Muridae) from the Paleogene of south-east Serbia". Palaeobiodiversity and Palaeoenvironments. 99 (3): 511–526. doi:10.1007/s12549-018-0343-2. S2CID 133944832.
  301. ^ Esperanza Cerdeño; María E. Pérez; Cecilia M. Deschamps; Víctor H. Contreras (2019). "A new capybara from the late Miocene of San Juan Province, Argentina, and its phylogenetic implications". Acta Palaeontologica Polonica. 64 (1): 199–212. doi:10.4202/app.00544.2018. hdl:11336/117299.
  302. ^ a b c d e María Encarnación Pérez; Michelle Arnal; Myriam Boivin; María Guiomar Vucetich; Adriana Candela; Felipe Busker; Bernardino Mamani Quispe (2018). "New caviomorph rodents from the late Oligocene of Salla, Bolivia: taxonomic, chronological, and biogeographic implications for the Deseadan faunas of South America". Journal of Systematic Palaeontology. 17 (10): 821–847. doi:10.1080/14772019.2018.1471622. S2CID 89662626.
  303. ^ a b Ismael Ferrusquia-Villafranca; Lawrence J. Flynn; Jose E. Ruiz-Gonzalez; Jose Ramon Torres-Hernandez; Enrique Martinez-Hernandez (2018). "New Eocene rodents from Northwestern Oaxaca, Southeastern Mexico, and their paleobiological significance". Journal of Vertebrate Paleontology. 38 (5): e1514615. Bibcode:2018JVPal..38E4615F. doi:10.1080/02724634.2018.1514615. S2CID 92107286.
  304. ^ a b c d e f g Myriam Boivin; Laurent Marivaux; François Pujos; Rodolfo Salas-Gismondi; Julia V. Tejada-Lara; Rafael M. Varas-Malca; Pierre-Olivier Antoine (2018). "Early Oligocene caviomorph rodents from Shapaja, Peruvian Amazonia". Palaeontographica Abteilung A. 311 (1–6): 87–156. Bibcode:2018PalAA.311...87B. doi:10.1127/pala/2018/0075. hdl:11336/87451. S2CID 135082842.
  305. ^ Pablo Pelaez-Campomanes; Fikret Göktaş; Tanju Kaya; Peter Joniak; Melike Bilgin; Serdar Mayda; Lars W. van den Hoek Ostende (2018). "Gördes: a new early Miocene micromammal assemblage from western Anatolia". Palaeobiodiversity and Palaeoenvironments. 99 (4): 639–653. doi:10.1007/s12549-018-0346-z. S2CID 134949723.
  306. ^ Thomas Mörs; Yukimitsu Tomida (2018). "Euroxenomys nanus sp. nov., a minute beaver (Rodentia, Castoridae) from the Early Miocene of Japan". Paleontological Research. 22 (2): 145–149. doi:10.2517/2017PR013. S2CID 135123180.
  307. ^ Eduardo Jiménez-Hidalgo; Rosalía Guerrero-Arenas; Krister T. Smith (2018). "Gregorymys veloxikua, The Oldest Pocket Gopher (Rodentia: Geomyidae), and The Early Diversification of Geomyoidea". Journal of Mammalian Evolution. 25 (3): 427–439. doi:10.1007/s10914-017-9383-z. S2CID 207195992.
  308. ^ Raquel López-Antoñanzas; Pablo Peláez-Campomanes; Jérôme Prieto; Fabien Knoll (2018). "New species of Karydomys (Rodentia) from the Miocene of Chios Island (Greece) and phylogenetic relationships of this rare democricetodontine genus" (PDF). Papers in Palaeontology. 5 (1): 33–45. doi:10.1002/spp2.1224. S2CID 134578075.
  309. ^ Franck Barbière; Pablo E. Ortiz; Ulyses F.J. Pardiñas (2018). "The oldest sigmodontine rodent revisited and the age of the first South American cricetids". Journal of Paleontology. 93 (2): 368–384. doi:10.1017/jpa.2018.74. S2CID 135378126.
  310. ^ a b Jonathan Cramb; Gilbert J. Price; Scott A. Hocknull (2018). "Short-tailed mice with a long fossil record: the genus Leggadina (Rodentia: Muridae) from the Quaternary of Queensland, Australia". PeerJ. 6: e5639. doi:10.7717/peerj.5639. PMC 6152458. PMID 30258727.
  311. ^ Mary R. Dawson; Kurt N. Constenius (2018). "Mammalian fauna of the Middle Eocene Kishenehn Formation, Middle Fork of the Flathead River, Montana". Annals of Carnegie Museum. 85 (1): 25–60. Bibcode:2018AnCM...85...25D. doi:10.2992/007.085.0103. S2CID 92205784.
  312. ^ Wilma Wessels; Andrew A. van de Weerd; Hans de Bruijn; Zoran Marković (2018). "New Melissiodontinae (Mammalia, Rodentia) from the Paleogene of south-east Serbia". Palaeobiodiversity and Palaeoenvironments. 98 (3): 471–487. Bibcode:2018PdPe...98..471W. doi:10.1007/s12549-017-0311-2. PMC 6417381. PMID 30956715.
  313. ^ Pierre Mein; Martin Pickford (2018). "Reithroparamyine rodent from the Eocene of Namibia" (PDF). Communications of the Geological Survey of Namibia. 18: 38–47.
  314. ^ M. Carolina Madozzo-Jaén; M. Encarnación Pérez; Claudia I. Montalvo; Rodrigo L. Tomassini (2018). "Systematic review of Neocavia from the Neogene of Argentina: Phylogenetic and evolutionary implications". Acta Palaeontologica Polonica. 63 (2): 241–260. doi:10.4202/app.00464.2018. hdl:11336/81898.
  315. ^ Robert A. Martin; Alexey Tesakov; Jordi Agustí; Karla Johnston (2018). "Orcemys, a new genus of arvicolid rodent from the early Pleistocene of the Guadix–Baza Basin, southern Spain". Comptes Rendus Palevol. 17 (4–5): 310–319. Bibcode:2018CRPal..17..310M. doi:10.1016/j.crpv.2017.06.006.
  316. ^ a b Andrew A. van de Weerd; Hans de Bruijn; Zoran Marković; Wilma Wessels (2018). "Paracricetodontinae (Mammalia, Rodentia) from the late Eocene and early Oligocene of south-east Serbia". Palaeobiodiversity and Palaeoenvironments. 98 (3): 489–508. Bibcode:2018PdPe...98..489V. doi:10.1007/s12549-017-0317-9. PMC 6417380. PMID 30956716.
  317. ^ a b c Ban-Yue Wang (2018). Late Miocene pararhizomyines from Linxia Basin of Gansu, China. Palaeontologia Sinica. Vol. 200, New Series C31. pp. 1–174. ISBN 978-7030575128.
  318. ^ Thijs van Kolfschoten; Alexey S. Tesakov; Christopher J. Bell (2018). "The first record of Phenacomys (Mammalia, Rodentia, Cricetidae) in Europe (early Pleistocene, Zuurland, The Netherlands)". Quaternary Science Reviews. 192: 274–281. Bibcode:2018QSRv..192..274V. doi:10.1016/j.quascirev.2018.06.005. S2CID 135265006.
  319. ^ Jérôme Prieto; Xiao-Yu Lu; Olivier Maridet; Damien Becker; Claudius Pirkenseer; Gaëtan Rauber; Pablo Peláez-Campomanes (2018). "New data on the Miocene dormouse Simplomys García-Paredes, 2009 from the peri-alpin basins of Switzerland and Germany: palaeodiversity of a rare genus in Central Europe" (PDF). Palaeobiodiversity and Palaeoenvironments. 99 (3): 527–543. doi:10.1007/s12549-018-0339-y. S2CID 134745607.
  320. ^ Martin Pickford (2018). "New Zegdoumyidae (Rodentia, Mammalia) from the Middle Eocene of Black Crow, Namibia : taxonomy, dental formula" (PDF). Communications of the Geological Survey of Namibia. 18: 48–63.
  321. ^ Martin Pickford (2018). "Tufamyidae, a new family of hystricognath rodents from the Palaeogene and Neogene of the Sperrgebiet, Namibia" (PDF). Communications of the Geological Survey of Namibia. 19: 71–109.
  322. ^ Maxim V. Sinitsa; Valentin A. Nesin (2018). "Systematics and phylogeny of Vasseuromys (Mammalia, Rodentia, Gliridae) with a description of a new species from the late Miocene of eastern Europe". Palaeontology. 61 (5): 679–701. Bibcode:2018Palgy..61..679S. doi:10.1111/pala.12359. S2CID 133844750.
  323. ^ James B. Rossie; Timothy D. Smith; K. Christopher Beard; Marc Godinot; Timothy B. Rowe (2018). "Nasolacrimal anatomy and haplorhine origins". Journal of Human Evolution. 114: 176–183. Bibcode:2018JHumE.114..176R. doi:10.1016/j.jhevol.2017.11.004. PMID 29447758.
  324. ^ Gregg F. Gunnell; Doug M. Boyer; Anthony R. Friscia; Steven Heritage; Fredrick Kyalo Manthi; Ellen R. Miller; Hesham M. Sallam; Nancy B. Simmons; Nancy J. Stevens; Erik R. Seiffert (2018). "Fossil lemurs from Egypt and Kenya suggest an African origin for Madagascar's aye-aye". Nature Communications. 9 (1): Article number 3193. Bibcode:2018NatCo...9.3193G. doi:10.1038/s41467-018-05648-w. PMC 6104046. PMID 30131571.
  325. ^ Jonathan M. G. Perry (2018). "Inferring the diets of extinct giant lemurs from osteological correlates of muscle dimensions". The Anatomical Record. 301 (2): 343–362. doi:10.1002/ar.23719. PMID 29330948. S2CID 3678489.
  326. ^ Laura K. Stroik; Gary T. Schwartz (2018). "The role of dietary competition in the origination and early diversification of North American euprimates". Proceedings of the Royal Society B: Biological Sciences. 285 (1884): 20181230. doi:10.1098/rspb.2018.1230. PMC 6111171. PMID 30068683.
  327. ^ Doug M. Boyer; Stephanie A. Maiolino; Patricia A. Holroyd; Paul E. Morse; Jonathan I. Bloch (2018). "Oldest evidence for grooming claws in euprimates". Journal of Human Evolution. 122: 1–22. Bibcode:2018JHumE.122....1B. doi:10.1016/j.jhevol.2018.03.010. PMID 29935935. S2CID 49412836.
  328. ^ Thomas A. Püschel; Jordi Marcé-Nogué; Justin T. Gladman; René Bobe; William I. Sellers (2018). "Inferring locomotor behaviours in Miocene New World monkeys using finite element analysis, geometric morphometrics and machine-learning classification techniques applied to talar morphology". Journal of the Royal Society Interface. 15 (146): 20180520. doi:10.1098/rsif.2018.0520. PMC 6170775. PMID 30257926.
  329. ^ Nelson M. Novo; Marcelo F. Tejedor; Laureano Raúl González Ruiz (2018). "Previously unknown fossil platyrrhines (Primates) of Patagonia from the Tournouër collection at the Muséum national d'Histoire naturelle, Paris". Geodiversitas. 40 (22): 529–535. doi:10.5252/geodiversitas2018v40a22. hdl:11336/82708. S2CID 134259445.
  330. ^ Roseina Woods; Samuel T. Turvey; Selina Brace; Ross D. E. MacPhee; Ian Barnes (2018). "Ancient DNA of the extinct Jamaican monkey Xenothrix reveals extreme insular change within a morphologically conservative radiation". Proceedings of the National Academy of Sciences of the United States of America. 115 (50): 12769–12774. Bibcode:2018PNAS..11512769W. doi:10.1073/pnas.1808603115. PMC 6294883. PMID 30420497.
  331. ^ Myra F. Laird; Elaine E. Kozma; Amandus Kwekason; Terry Harrison (2018). "A new fossil cercopithecid tibia from Laetoli and its implications for positional behavior and paleoecology". Journal of Human Evolution. 118: 27–42. Bibcode:2018JHumE.118...27L. doi:10.1016/j.jhevol.2018.02.005. PMID 29606201.
  332. ^ Dimitris S. Kostopoulos; Franck Guy; Zoi Kynigopoulou; George D. Koufos; Xavier Valentin; Gildas Merceron (2018). "A 2Ma old baboon-like monkey from Northern Greece and new evidence to support the ParadolichopithecusProcynocephalus synonymy (Primates: Cercopithecidae)". Journal of Human Evolution. 121: 178–192. Bibcode:2018JHumE.121..178K. doi:10.1016/j.jhevol.2018.02.012. PMID 29779686. S2CID 29167579.
  333. ^ Kelsey D. Pugh; Christopher C. Gilbert (2018). "Phylogenetic relationships of living and fossil African papionins: Combined evidence from morphology and molecules". Journal of Human Evolution. 123: 35–51. Bibcode:2018JHumE.123...35P. doi:10.1016/j.jhevol.2018.06.002. PMID 30057325. S2CID 51866405.
  334. ^ Christopher C. Gilbert; Stephen R. Frost; Kelsey D. Pugh; Monya Anderson; Eric Delson (2018). "Evolution of the modern baboon (Papio hamadryas): A reassessment of the African Plio-Pleistocene record". Journal of Human Evolution. 122: 38–69. Bibcode:2018JHumE.122...38G. doi:10.1016/j.jhevol.2018.04.012. PMID 29954592. S2CID 49597411.
  335. ^ Florian Martin; Chris-Alexander Plastiras; Gildas Merceron; Antoine Souron; Jean-Renaud Boisserie (2018). "Dietary niches of terrestrial cercopithecines from the Plio-Pleistocene Shungura Formation, Ethiopia: evidence from Dental Microwear Texture Analysis". Scientific Reports. 8 (1): Article number 14052. Bibcode:2018NatSR...814052M. doi:10.1038/s41598-018-32092-z. PMC 6145942. PMID 30232366.
  336. ^ Jelle W.F. Reumer; Dick Mol; Ralf-Dietrich Kahlke (2018). "First finds of Pleistocene Macaca sylvanus (Cercopithecidae, Primates) from the North Sea". Revue de Paléobiologie, Genève. 37 (2): 555–560.
  337. ^ Daniel DeMiguel; Lorenzo Rook (2018). "Understanding climate's influence on the extinction of Oreopithecus (late Miocene, Tusco-Sardinian paleobioprovince, Italy)". Journal of Human Evolution. 116: 14–26. Bibcode:2018JHumE.116...14D. doi:10.1016/j.jhevol.2017.11.008. PMID 29477179.
  338. ^ Yasuhiro Kikuchi; Masato Nakatsukasa; Hiroshi Tsujikawa; Yoshihiko Nakano; Yutaka Kunimatsu; Naomichi Ogihara; Daisuke Shimizu; Tomo Takano; Hideo Nakaya; Yoshihiro Sawada; Hidemi Ishida (2018). "Sexual dimorphism of body size in an African fossil ape, Nacholapithecus kerioi". Journal of Human Evolution. 123: 129–140. Bibcode:2018JHumE.123..129K. doi:10.1016/j.jhevol.2018.07.003. PMID 30119896. S2CID 206143098.
  339. ^ Tomo Takano; Masato Nakatsukasa; Yutaka Kunimatsu; Yoshihiko Nakano; Naomichi Ogihara; Hidemi Ishida (2018). "Forelimb long bones of Nacholapithecus (KNM-BG 35250) from the middle Miocene in Nachola, northern Kenya". Anthropological Science. 126 (3): 135–149. doi:10.1537/ase.181022.
  340. ^ Ansuya Bhandari; Richard F. Kay; Blythe A. Williams; Brahma Nand Tiwari; Sunil Bajpai; Tobin Hieronymus (2018). "First record of the Miocene hominoid Sivapithecus from Kutch, Gujarat state, western India". PLOS ONE. 13 (11): e0206314. Bibcode:2018PLoSO..1306314B. doi:10.1371/journal.pone.0206314. PMC 6235281. PMID 30427876.
  341. ^ Stephanie N. Spehar; Douglas Sheil; Terry Harrison; Julien Louys; Marc Ancrenaz; Andrew J. Marshall; Serge A. Wich; Michael W. Bruford; Erik Meijaard (2018). "Orangutans venture out of the rainforest and into the Anthropocene". Science Advances. 4 (6): e1701422. Bibcode:2018SciA....4.1422S. doi:10.1126/sciadv.1701422. PMC 6021148. PMID 29963619.
  342. ^ Jochen Fuss; Gregor Uhlig; Madelaine Böhme (2018). "Earliest evidence of caries lesion in hominids reveal sugar-rich diet for a Middle Miocene dryopithecine from Europe". PLOS ONE. 13 (8): e0203307. Bibcode:2018PLoSO..1303307F. doi:10.1371/journal.pone.0203307. PMC 6117023. PMID 30161214.
  343. ^ Julien Benoit; Francis J. Thackeray (2017). "A cladistic analysis of Graecopithecus". South African Journal of Science. 113 (11/12): #a0238. doi:10.17159/sajs.2017/a0238.
  344. ^ Jochen Fuss; Nikolai Spassov; Madelaine Böhme; David R. Begun (2018). "Response to Benoit and Thackeray (2017): "A cladistic analysis of Graecopithecus"". South African Journal of Science. 114 (5/6): 11–12. doi:10.17159/sajs.2018/a0267.
  345. ^ Tesla A. Monson; David W. Armitage; Leslea J. Hlusko (2018). "Using machine learning to classify extant apes and interpret the dental morphology of the chimpanzee-human last common ancestor". PaleoBios. 35: ucmp_paleobios_40776.
  346. ^ Tanya M. Smith; Alexandra Houssaye; Ottmar Kullmer; Adeline Le Cabec; Anthony J. Olejniczak; Friedemann Schrenk; John de Vos; Paul Tafforeau (2018). "Disentangling isolated dental remains of Asian Pleistocene hominins and pongines". PLOS ONE. 13 (11): e0204737. Bibcode:2018PLoSO..1304737S. doi:10.1371/journal.pone.0204737. PMC 6211657. PMID 30383758.
  347. ^ Christopher B. Ruff; M. Loring Burgess; Nicole Squyres; Juho-Antti Junno; Erik Trinkaus (2018). "Lower limb articular scaling and body mass estimation in Pliocene and Pleistocene hominins". Journal of Human Evolution. 115: 85–111. Bibcode:2018JHumE.115...85R. doi:10.1016/j.jhevol.2017.10.014. PMID 29331230.
  348. ^ Andrew Du; Andrew M. Zipkin; Kevin G. Hatala; Elizabeth Renner; Jennifer L. Baker; Serena Bianchi; Kallista H. Bernal; Bernard A. Wood (2018). "Pattern and process in hominin brain size evolution are scale-dependent". Proceedings of the Royal Society B: Biological Sciences. 285 (1873): 20172738. doi:10.1098/rspb.2017.2738. PMC 5832710. PMID 29467267.
  349. ^ P. Raia; M. Boggioni; F. Carotenuto; S. Castiglione; M. Di Febbraro; F. Di Vincenzo; M. Melchionna; A. Mondanaro; A. Papini; A. Profico; C. Serio; A. Veneziano; V. A. Vero; L. Rook; C. Meloro; G. Manzi (2018). "Unexpectedly rapid evolution of mandibular shape in hominins". Scientific Reports. 8 (1): Article number 7340. Bibcode:2018NatSR...8.7340R. doi:10.1038/s41598-018-25309-8. PMC 5943523. PMID 29743608.
  350. ^ Marc R. Meyer; Charles Woodward; Amy Tims; Markus Bastir (2018). "Neck function in early hominins and suspensory primates: Insights from the uncinate process". American Journal of Physical Anthropology. 166 (3): 613–637. doi:10.1002/ajpa.23448. PMID 29492962.
  351. ^ Biren A. Patel; Tea Jashashvili; Stephanie H. Bui; Kristian J. Carlson; Nicole L. Griffin; Ian J. Wallace; Caley M. Orr; Randall L. Susman (2018). "Inter-ray variation in metatarsal strength properties in humans and African apes: Implications for inferring bipedal biomechanics in the Olduvai Hominid 8 foot". Journal of Human Evolution. 121: 147–165. Bibcode:2018JHumE.121..147P. doi:10.1016/j.jhevol.2018.02.013. PMID 29764690.
  352. ^ Peter J. Fernández; Carrie S. Mongle; Louise Leakey; Daniel J. Proctor; Caley M. Orr; Biren A. Patel; Sergio Almécija; Matthew W. Tocheri; William L. Jungers (2018). "Evolution and function of the hominin forefoot". Proceedings of the National Academy of Sciences of the United States of America. 115 (35): 8746–8751. Bibcode:2018PNAS..115.8746F. doi:10.1073/pnas.1800818115. PMC 6126759. PMID 30104373.
  353. ^ Manuel Domínguez-Rodrigo; Enrique Baquedano (2018). "Distinguishing butchery cut marks from crocodile bite marks through machine learning methods". Scientific Reports. 8 (1): Article number 5786. Bibcode:2018NatSR...8.5786D. doi:10.1038/s41598-018-24071-1. PMC 5893542. PMID 29636550.
  354. ^ Jennifer A. Parkinson (2018). "Revisiting the hunting-versus-scavenging debate at FLK Zinj: A GIS spatial analysis of bone surface modifications produced by hominins and carnivores in the FLK 22 assemblage, Olduvai Gorge, Tanzania". Palaeogeography, Palaeoclimatology, Palaeoecology. 511: 29–51. Bibcode:2018PPP...511...29P. doi:10.1016/j.palaeo.2018.06.044. S2CID 135446336.
  355. ^ Gerard D. Gierliński; Grzegorz Niedźwiedzki; Martin G. Lockley; Athanassios Athanassiou; Charalampos Fassoulas; Zofia Dubicka; Andrzej Boczarowski; Matthew R. Bennett; Per Erik Ahlberg (2017). "Possible hominin footprints from the late Miocene (c. 5.7 Ma) of Crete?". Proceedings of the Geologists' Association. 128 (5–6): 697–710. Bibcode:2017PrGA..128..697G. doi:10.1016/j.pgeola.2017.07.006. hdl:20.500.12128/3647.
  356. ^ Jeff Meldrum; Esteban Sarmiento (2018). "Comments on possible Miocene hominin footprints". Proceedings of the Geologists' Association. 129 (4): 577–580. Bibcode:2018PrGA..129..577M. doi:10.1016/j.pgeola.2018.05.006. S2CID 134963777.
  357. ^ Mark Grabowski; Kevin G. Hatala; William L. Jungers (2018). "Body mass estimates of the earliest possible hominins and implications for the last common ancestor" (PDF). Journal of Human Evolution. 122: 84–92. Bibcode:2018JHumE.122...84G. doi:10.1016/j.jhevol.2018.05.001. PMID 29910044. S2CID 49271477.
  358. ^ Adam Kuperavage; David Pokrajac; Sakdapong Chavanaves; Robert B. Eckhardt (2018). "Earliest known hominin calcar femorale in Orrorin tugenensis provides further internal anatomical evidence for origin of human bipedal locomotion". The Anatomical Record. 301 (11): 1834–1839. doi:10.1002/ar.23939. PMID 30338643. S2CID 53011326.
  359. ^ Thibaut Caley; Thomas Extier; James A. Collins; Enno Schefuß; Lydie Dupont; Bruno Malaizé; Linda Rossignol; Antoine Souron; Erin L. McClymont; Francisco J. Jimenez-Espejo; Carmen García-Comas; Frédérique Eynaud; Philippe Martinez; Didier M. Roche; Stephan J. Jorry; Karine Charlier; Mélanie Wary; Pierre-Yves Gourves; Isabelle Billy; Jacques Giraudeau (2018). "A two-million-year-long hydroclimatic context for hominin evolution in southeastern Africa" (PDF). Nature. 560 (7716): 76–79. Bibcode:2018Natur.560...76C. doi:10.1038/s41586-018-0309-6. PMID 29988081. S2CID 49668495.
  360. ^ Richard S. Meindl; Morgan E. Chaney; C. Owen Lovejoy (2018). "Early hominids may have been weed species". Proceedings of the National Academy of Sciences of the United States of America. 115 (6): 1244–1249. Bibcode:2018PNAS..115.1244M. doi:10.1073/pnas.1719669115. PMC 5819451. PMID 29358388.
  361. ^ Simon J. Maxwell; Philip J. Hopley; Paul Upchurch; Christophe Soligo (2018). "Sporadic sampling, not climatic forcing, drives observed early hominin diversity". Proceedings of the National Academy of Sciences of the United States of America. 115 (19): 4891–4896. Bibcode:2018PNAS..115.4891M. doi:10.1073/pnas.1721538115. PMC 5948983. PMID 29686074.
  362. ^ Elaine E. Kozma; Nicole M. Webb; William E. H. Harcourt-Smith; David A. Raichlen; Kristiaan D'Août; Mary H. Brown; Emma M. Finestone; Stephen R. Ross; Peter Aerts; Herman Pontzer (2018). "Hip extensor mechanics and the evolution of walking and climbing capabilities in humans, apes, and fossil hominins". Proceedings of the National Academy of Sciences of the United States of America. 115 (16): 4134–4139. Bibcode:2018PNAS..115.4134K. doi:10.1073/pnas.1715120115. PMC 5910817. PMID 29610309.
  363. ^ Amélie Beaudet; Jean Dumoncel; Frikkie de Beer; Stanley Durrleman; Emmanuel Gilissen; Anna Oettlé; Gérard Subsol; John Francis Thackeray; José Braga (2018). "The endocranial shape of Australopithecus africanus: surface analysis of the endocasts of Sts 5 and Sts 60". Journal of Anatomy. 232 (2): 296–303. doi:10.1111/joa.12745. hdl:2263/63900. PMC 5770328. PMID 29148040.
  364. ^ Alexandria Peterson; Elicia F. Abella; Frederick E. Grine; Mark F. Teaford; Peter S. Ungar (2018). "Microwear textures of Australopithecus africanus and Paranthropus robustus molars in relation to paleoenvironment and diet". Journal of Human Evolution. 119: 42–63. Bibcode:2018JHumE.119...42P. doi:10.1016/j.jhevol.2018.02.004. PMID 29685753. S2CID 206143068.
  365. ^ Kornelius Kupczik; Viviana Toro-Ibacache; Gabriele A. Macho (2018). "On the relationship between maxillary molar root shape and jaw kinematics in Australopithecus africanus and Paranthropus robustus". Royal Society Open Science. 5 (8): 180825. Bibcode:2018RSOS....580825K. doi:10.1098/rsos.180825. PMC 6124107. PMID 30225074.
  366. ^ Timothy M. Ryan; Kristian J. Carlson; Adam D. Gordon; Nina Jablonski; Colin N. Shaw; Jay T. Stock (2018). "Human-like hip joint loading in Australopithecus africanus and Paranthropus robustus". Journal of Human Evolution. 121: 12–24. Bibcode:2018JHumE.121...12R. doi:10.1016/j.jhevol.2018.03.008. PMID 29706230. S2CID 14060188.
  367. ^ Tina Lüdecke; Ottmar Kullmer; Ulrike Wacker; Oliver Sandrock; Jens Fiebig; Friedemann Schrenk; Andreas Mulch (2018). "Dietary versatility of Early Pleistocene hominins". Proceedings of the National Academy of Sciences of the United States of America. 115 (52): 13330–13335. Bibcode:2018PNAS..11513330L. doi:10.1073/pnas.1809439115. PMC 6310814. PMID 30530680.
  368. ^ Andrew Sillen; Vincent Balter (2018). "Strontium isotopic aspects of Paranthropus robustus teeth; implications for habitat, residence, and growth". Journal of Human Evolution. 114: 118–130. Bibcode:2018JHumE.114..118S. doi:10.1016/j.jhevol.2017.09.009. PMID 29447754.
  369. ^ Gaokgatlhe M. Tawane; J. Francis Thackeray (2018). "The cranium of Sts 5 ('Mrs Ples') in relation to sexual dimorphism of Australopithecus africanus". South African Journal of Science. 114 (1/2): 13–16. doi:10.17159/sajs.2018/a0249.
  370. ^ Tracy L. Kivell; Rebecca Davenport; Jean-Jacques Hublin; J. Francis Thackeray; Matthew M. Skinner (2018). "Trabecular architecture and joint loading of the proximal humerus in extant hominoids, Ateles, and Australopithecus africanus" (PDF). American Journal of Physical Anthropology. 167 (2): 348–365. doi:10.1002/ajpa.23635. PMID 30129074. S2CID 52046768.
  371. ^ Jeremy M. DeSilva; Corey M. Gill; Thomas C. Prang; Miriam A. Bredella; Zeresenay Alemseged (2018). "A nearly complete foot from Dikika, Ethiopia and its implications for the ontogeny and function of Australopithecus afarensis". Science Advances. 4 (7): eaar7723. Bibcode:2018SciA....4.7723D. doi:10.1126/sciadv.aar7723. PMC 6031372. PMID 29978043.
  372. ^ Chris Robinson; Timothy L. Campbell; Susanne Cote; Darryl J. de Ruiter (2018). "Temporal ranges and ancestry in the hominin fossil record: The case of Australopithecus sediba". South African Journal of Science. 114 (3/4): 92–98. doi:10.17159/sajs.2018/20170327.
  373. ^ Darryl J. De Ruiter; Keely B. Carlson; Juliet K. Brophy; Steven E. Churchill; Kristian J. Carlson; Lee R. Berger (2018). "The skull of Australopithecus sediba" (PDF). PaleoAnthropology. 2018: 56–155. doi:10.4207/PA.2018.ART112 (inactive 1 November 2024).{{cite journal}}: CS1 maint: DOI inactive as of November 2024 (link)
  374. ^ Scott A. Williams; Marc R. Meyer; Sahed Nalla; Daniel García-Martínez; Theirra K. Nalley; Jennifer Eyre; Thomas C. Prang; Markus Bastir; Peter Schmid; Steven E. Churchill; Lee R. Berger (2018). "The vertebrae, ribs, and sternum of Australopithecus sediba" (PDF). PaleoAnthropology. 2018: 156–233. doi:10.4207/PA.2018.ART113 (inactive 1 November 2024).{{cite journal}}: CS1 maint: DOI inactive as of November 2024 (link)
  375. ^ Steven E. Churchill; David J. Green; Elen M. Feuerriegel; Marisa E. Macias; Sandra Matthews; Kristian J. Carlson; Peter Schmid; Lee R. Berger (2018). "The shoulder, arm, and forearm of Australopithecus sediba" (PDF). PaleoAnthropology. 2018: 234–281. doi:10.4207/PA.2018.ART114 (inactive 1 November 2024).{{cite journal}}: CS1 maint: DOI inactive as of November 2024 (link)
  376. ^ Tracey L. Kivell; Steven E. Churchill; Job M. Kibii; Peter Schmid; Lee R. Berger (2018). "The hand of Australopithecus sediba" (PDF). PaleoAnthropology. 2018: 282–333. doi:10.4207/PA.2018.ART115 (inactive 1 November 2024).{{cite journal}}: CS1 maint: DOI inactive as of November 2024 (link)
  377. ^ Steven E. Churchill; Job M. Kibii; Peter Schmid; Nichelle D. Reed; Lee R. Berger (2018). "The pelvis of Australopithecus sediba" (PDF). PaleoAnthropology. 2018: 334–356. doi:10.4207/PA.2018.ART116 (inactive 1 November 2024).{{cite journal}}: CS1 maint: DOI inactive as of November 2024 (link)
  378. ^ Jeremy M. DeSilva; Kristian J. Carlson; Alexander G. Claxton; William E.H. Harcourt-Smith; Ellison J. McNutt; Adam D. Sylvester; Christopher S. Walker; Bernhard Zipfel; Steven E. Churchill; Lee R. Berger (2018). "The anatomy of the lower limb skeleton of Australopithecus sediba" (PDF). PaleoAnthropology. 2018: 357–405. doi:10.4207/PA.2018.ART117 (inactive 1 November 2024).{{cite journal}}: CS1 maint: DOI inactive as of November 2024 (link)
  379. ^ Trenton W. Holliday; Steven E. Churchill; Kristian J. Carlson; Jeremy M. DeSilva; Peter Schmid; Christopher S. Walker; Lee R. Berger (2018). "Body size and proportions of Australopithecus sediba" (PDF). PaleoAnthropology. 2018: 406–422. doi:10.4207/PA.2018.ART118 (inactive 1 November 2024).{{cite journal}}: CS1 maint: DOI inactive as of November 2024 (link)
  380. ^ Amey Y. Zhang; Jeremy M. DeSilva (2018). "Computer animation of the walking mechanics of Australopithecus sediba" (PDF). PaleoAnthropology. 2018: 423–432. doi:10.4207/PA.2018.ART119 (inactive 1 November 2024).{{cite journal}}: CS1 maint: DOI inactive as of November 2024 (link)
  381. ^ R. Hanon; S. Péan; S. Prat (2018). "Reassessment of anthropic modifications on the Early Pleistocene hominin specimen Stw53 (Sterkfontein, South Africa)" (PDF). Bulletins et Mémoires de la Société d'Anthropologie de Paris. 30 (1–2): 49–58. doi:10.3166/bmsap-2018-0013 (inactive 2024-11-18). S2CID 90208809.{{cite journal}}: CS1 maint: DOI inactive as of November 2024 (link)
  382. ^ Kathleen Kuman; Morris B. Sutton; Travis Rayne Pickering; Jason L.Heaton (2018). "The Oldowan industry from Swartkrans cave, South Africa, and its relevance for the African Oldowan". Journal of Human Evolution. 123: 52–69. Bibcode:2018JHumE.123...52K. doi:10.1016/j.jhevol.2018.06.004. PMID 30097184. S2CID 51957279.
  383. ^ Mohamed Sahnouni; Josep M. Parés; Mathieu Duval; Isabel Cáceres; Zoheir Harichane; Jan van der Made; Alfredo Pérez-González; Salah Abdessadok; Nadia Kandi; Abdelkader Derradji; Mohamed Medig; Kamel Boulaghraif; Sileshi Semaw (2018). "1.9-million- and 2.4-million-year-old artifacts and stone tool–cutmarked bones from Ain Boucherit, Algeria". Science. 362 (6420): 1297–1301. Bibcode:2018Sci...362.1297S. doi:10.1126/science.aau0008. hdl:10072/383164. PMID 30498166. S2CID 54166305.
  384. ^ Caroline VanSickle; Zachary Cofran; Daniel García-Martínez; Scott A. Williams; Steven E. Churchill; Lee R. Berger; John Hawks (2018). "Homo naledi pelvic remains from the Dinaledi Chamber, South Africa". Journal of Human Evolution. 125: 122–136. Bibcode:2018JHumE.125..122V. doi:10.1016/j.jhevol.2017.10.001. PMID 29169681. S2CID 2909448.
  385. ^ Debra R. Bolter; John Hawks; Barry Bogin; Noel Cameron (2018). "Palaeodemographics of individuals in Dinaledi Chamber using dental remains". South African Journal of Science. 114 (1/2): 37–42. doi:10.17159/sajs.2018/20170066.
  386. ^ Peter S. Ungar; Lee R. Berger (2018). "Brief communication: Dental microwear and diet of Homo naledi". American Journal of Physical Anthropology. 166 (1): 228–235. doi:10.1002/ajpa.23418. PMID 29399788.
  387. ^ Michael A. Berthaume; Lucas K. Delezene; Kornelius Kupczik (2018). "Dental topography and the diet of Homo naledi" (PDF). Journal of Human Evolution. 118: 14–26. Bibcode:2018JHumE.118...14B. doi:10.1016/j.jhevol.2018.02.006. PMID 29606200.
  388. ^ Ralph L. Holloway; Shawn D. Hurst; Heather M. Garvin; P. Thomas Schoenemann; William B. Vanti; Lee R. Berger; John Hawks (2018). "Endocast morphology of Homo naledi from the Dinaledi Chamber, South Africa". Proceedings of the National Academy of Sciences of the United States of America. 115 (22): 5738–5743. Bibcode:2018PNAS..115.5738H. doi:10.1073/pnas.1720842115. PMC 5984505. PMID 29760068.
  389. ^ Joel D. Irish; Shara E. Bailey; Debbie Guatelli-Steinberg; Lucas K. Delezene; Lee R. Berger (2018). "Ancient teeth, phenetic affinities, and African hominins: Another look at where Homo naledi fits in" (PDF). Journal of Human Evolution. 122: 108–123. Bibcode:2018JHumE.122..108I. doi:10.1016/j.jhevol.2018.05.007. PMID 29887210. S2CID 47010223.
  390. ^ Marina C. Elliott; Rolf Quam; Shahed Nalla; Darryl J. de Ruiter; John Hawks; Lee R.Berger (2018). "Description and analysis of three Homo naledi incudes from the Dinaledi Chamber, Rising Star cave (South Africa)". Journal of Human Evolution. 122: 146–155. doi:10.1016/j.jhevol.2018.06.008. PMID 30001870. S2CID 51618301.
  391. ^ Edward J. Odes; Lucas K. Delezene; Patrick S. Randolph-Quinney; Jacqueline S. Smilg; Tanya N. Augustine; Kudakwashe Jakata; Lee R. Berger (2018). "A case of benign osteogenic tumour in Homo naledi: Evidence for peripheral osteoma in the U.W. 101-1142 mandible". International Journal of Paleopathology. 21: 47–55. doi:10.1016/j.ijpp.2017.05.003. PMID 29778414. S2CID 29150977.
  392. ^ Charles P. Egeland; Manuel Domínguez-Rodrigo; Travis Rayne Pickering; Colin G. Menter; Jason L. Heaton (2018). "Hominin skeletal part abundances and claims of deliberate disposal of corpses in the Middle Pleistocene". Proceedings of the National Academy of Sciences of the United States of America. 115 (18): 4601–4606. Bibcode:2018PNAS..115.4601E. doi:10.1073/pnas.1718678115. PMC 5939076. PMID 29610322.
  393. ^ Amélie Vialet; Sandrine Prat; Patricia Wilms; Mehmet Cihat Alçiçek (2018). "The Kocabaş hominin (Denizli Basin, Turkey) at the crossroads of Eurasia: New insights from morphometric and cladistic analyses". Comptes Rendus Palevol. 17 (1–2): 17–32. Bibcode:2018CRPal..17...17V. doi:10.1016/j.crpv.2017.11.003.
  394. ^ Simon Neubauer; Philipp Gunz; Louise Leakey; Meave Leakey; Jean-Jacques Hublin; Fred Spoor (2018). "Reconstruction, endocranial form and taxonomic affinity of the early Homo calvaria KNM-ER 42700". Journal of Human Evolution. 121: 25–39. Bibcode:2018JHumE.121...25N. doi:10.1016/j.jhevol.2018.04.005. PMID 29706231. S2CID 14020776.
  395. ^ Michael C. Pante; Jackson K. Njau; Blaire Hensley-Marschand; Trevor L. Keevil; Carmen Martín-Ramos; Renata Franco Peters; Ignacio de la Torre (2018). "The carnivorous feeding behavior of early Homo at HWK EE, Bed II, Olduvai Gorge, Tanzania". Journal of Human Evolution. 120: 215–235. Bibcode:2018JHumE.120..215P. doi:10.1016/j.jhevol.2017.06.005. PMID 28797516. S2CID 206142790.
  396. ^ Deborah L. Cunningham; Ronda R. Graves; Daniel J. Wescott; Robert C. McCarthy (2018). "The effect of ontogeny on estimates of KNM-WT 15000's adult body size". Journal of Human Evolution. 121: 119–127. Bibcode:2018JHumE.121..119C. doi:10.1016/j.jhevol.2018.04.002. PMID 29754743. S2CID 21680362.
  397. ^ Neil T. Roach; Andrew Du; Kevin G. Hatala; Kelly R. Ostrofsky; Jonathan S. Reeves; David R. Braun; John W.K. Harris; Anna K. Behrensmeyer; Brian G. Richmond (2018). "Pleistocene animal communities of a 1.5 million-year-old lake margin grassland and their relationship to Homo erectus paleoecology". Journal of Human Evolution. 122: 70–83. Bibcode:2018JHumE.122...70R. doi:10.1016/j.jhevol.2018.04.014. PMID 29970233. S2CID 49681563.
  398. ^ Darya Presnyakova; David R. Braun; Nicholas J. Conard; Craig Feibel; John W.K. Harris; Cornel M. Pop; Stefan Schlager; Will Archer (2018). "Site fragmentation, hominin mobility and LCT variability reflected in the early Acheulean record of the Okote Member, at Koobi Fora, Kenya". Journal of Human Evolution. 125: 159–180. Bibcode:2018JHumE.125..159P. doi:10.1016/j.jhevol.2018.07.008. PMID 30268405. S2CID 52893559.
  399. ^ Ashley S. Hammond; Sergio Almécija; Yosief Libsekal; Lorenzo Rook; Roberto Macchiarelli (2018). "A partial Homo pelvis from the Early Pleistocene of Eritrea". Journal of Human Evolution. 123: 109–128. Bibcode:2018JHumE.123..109H. doi:10.1016/j.jhevol.2018.06.010. PMID 30017175. S2CID 51676199.
  400. ^ Song Xing; Kristian J. Carlson; Pianpian Wei; Jianing He; Wu Liu (2018). "Morphology and structure of Homo erectus humeri from Zhoukoudian, Locality 1". PeerJ. 6: e4279. doi:10.7717/peerj.4279. PMC 5777375. PMID 29372121.
  401. ^ Song Xing; María Martinón-Torres; José María Bermúdez de Castro (2018). "The fossil teeth of the Peking Man". Scientific Reports. 8 (1): Article number 2066. Bibcode:2018NatSR...8.2066X. doi:10.1038/s41598-018-20432-y. PMC 5794973. PMID 29391445.
  402. ^ Feng Li; Christopher J. Bae; Christopher B. Ramsey; Fuyou Chen; Xing Gao (2018). "Re-dating Zhoukoudian Upper Cave, northern China and its regional significance". Journal of Human Evolution. 121: 170–177. Bibcode:2018JHumE.122...70R. doi:10.1016/j.jhevol.2018.04.014. PMID 29778246. S2CID 49681563.
  403. ^ Yanfen Kong; Chenglong Deng; Wu Liu; Xiujie Wu; Shuwen Pei; Lu Sun; Junyi Ge; Liang Yi; Rixiang Zhu (2018). "Magnetostratigraphic dating of the hominin occupation of Bailong Cave, central China". Scientific Reports. 8 (1): Article number 9699. Bibcode:2018NatSR...8.9699K. doi:10.1038/s41598-018-28065-x. PMC 6018768. PMID 29946102.
  404. ^ Zhaoyu Zhu; Robin Dennell; Weiwen Huang; Yi Wu; Shifan Qiu; Shixia Yang; Zhiguo Rao; Yamei Hou; Jiubing Xie; Jiangwei Han; Tingping Ouyang (2018). "Hominin occupation of the Chinese Loess Plateau since about 2.1 million years ago". Nature. 559 (7715): 608–612. Bibcode:2018Natur.559..608Z. doi:10.1038/s41586-018-0299-4. PMID 29995848. S2CID 49670311.
  405. ^ Xuefeng Sun; Huayu Lu; Shejiang Wang; Xinghua Xu; Qingxuan Zeng; Xuehe Lu; Chengqiu Lu; Wenchao Zhang; Xiaojian Zhang; Robin Dennell (2018). "Hominin distribution in glacial-interglacial environmental changes in the Qinling Mountains range, central China". Quaternary Science Reviews. 198: 37–55. Bibcode:2018QSRv..198...37S. doi:10.1016/j.quascirev.2018.08.012. S2CID 135289382.
  406. ^ Amélie Vialet; Mario Modesto-Mata; María Martinón-Torres; Marina Martínez de Pinillos; José-María Bermúdez de Castro (2018). "A reassessment of the Montmaurin-La Niche mandible (Haute Garonne, France) in the context of European Pleistocene human evolution". PLOS ONE. 13 (1): e0189714. Bibcode:2018PLoSO..1389714V. doi:10.1371/journal.pone.0189714. PMC 5770020. PMID 29337994.
  407. ^ Montserrat Sanz; Nohemi Sala; Joan Daura; Ana Pantoja-Pérez; Elena Santos; João Zilhão; Juan Luis Arsuaga (2018). "Taphonomic inferences about Middle Pleistocene hominins: The human cranium of Gruta da Aroeira (Portugal)". American Journal of Physical Anthropology. 167 (3): 615–627. doi:10.1002/ajpa.23689. PMID 30159875. S2CID 52119598.
  408. ^ Katharine MacDonald (2018). "Fire-free hominin strategies for coping with cool winter temperatures in north-western Europe from before 800,000 to circa 400,000 years ago" (PDF). PaleoAnthropology. 2018: 7–26. doi:10.4207/PA.2018.ART109 (inactive 1 November 2024).{{cite journal}}: CS1 maint: DOI inactive as of November 2024 (link)
  409. ^ R. Bernhart Owen; Veronica M. Muiruri; Tim K. Lowenstein; Robin W. Renaut; Nathan Rabideaux; Shangde Luo; Alan L. Deino; Mark J. Sier; Guillaume Dupont-Nivet; Emma P. McNulty; Kennie Leet; Andrew Cohen; Christopher Campisano; Daniel Deocampo; Chuan-Chou Shen; Anne Billingsley; Anthony Mbuthia (2018). "Progressive aridification in East Africa over the last half million years and implications for human evolution". Proceedings of the National Academy of Sciences of the United States of America. 115 (44): 11174–11179. Bibcode:2018PNAS..11511174B. doi:10.1073/pnas.1801357115. PMC 6217406. PMID 30297412.
  410. ^ Alison S. Brooks; John E. Yellen; Richard Potts; Anna K. Behrensmeyer; Alan L. Deino; David E. Leslie; Stanley H. Ambrose; Jeffrey R. Ferguson; Francesco d'Errico; Andrew M. Zipkin; Scott Whittaker; Jeffrey Post; Elizabeth G. Veatch; Kimberly Foecke; Jennifer B. Clark (2018). "Long-distance stone transport and pigment use in the earliest Middle Stone Age". Science. 360 (6384): 90–94. Bibcode:2018Sci...360...90B. doi:10.1126/science.aao2646. PMID 29545508. S2CID 14051717.
  411. ^ Richard Potts; Anna K. Behrensmeyer; J. Tyler Faith; Christian A. Tryon; Alison S. Brooks; John E. Yellen; Alan L. Deino; Rahab Kinyanjui; Jennifer B. Clark; Catherine Haradon; Naomi E. Levin; Hanneke J. M. Meijer; Elizabeth G. Veatch; R. Bernhart Owen; Robin W. Renaut (2018). "Environmental dynamics during the onset of the Middle Stone Age in eastern Africa". Science. 360 (6384): 86–90. Bibcode:2018Sci...360...86P. doi:10.1126/science.aao2200. PMID 29545506. S2CID 206662634.
  412. ^ Alan L. Deino; Anna K. Behrensmeyer; Alison S. Brooks; John E. Yellen; Warren D. Sharp; Richard Potts (2018). "Chronology of the Acheulean to Middle Stone Age transition in eastern Africa". Science. 360 (6384): 95–98. Bibcode:2018Sci...360...95D. doi:10.1126/science.aao2216. PMID 29545510. S2CID 3895578.
  413. ^ Justin Bradfield (2018). "Identifying animal taxa used to manufacture bone tools during the Middle Stone Age at Sibudu, South Africa: Results of a CT-rendered histological analysis". PLOS ONE. 13 (11): e0208319. Bibcode:2018PLoSO..1308319B. doi:10.1371/journal.pone.0208319. PMC 6264865. PMID 30496272.
  414. ^ Ceri Shipton; James Blinkhorn; Paul S. Breeze; Patrick Cuthbertson; Nick Drake; Huw S. Groucutt; Richard P. Jennings; Ash Parton; Eleanor M. L. Scerri; Abdullah Alsharekh; Michael D. Petraglia (2018). "Acheulean technology and landscape use at Dawadmi, central Arabia". PLOS ONE. 13 (7): e0200497. Bibcode:2018PLoSO..1300497S. doi:10.1371/journal.pone.0200497. PMC 6063418. PMID 30052630.
  415. ^ Eleanor M. L. Scerri; Ceri Shipton; Laine Clark-Balzan; Marine Frouin; Jean-Luc Schwenninger; Huw S. Groucutt; Paul S. Breeze; Ash Parton; James Blinkhorn; Nick A. Drake; Richard Jennings; Patrick Cuthbertson; Abdulaziz Al Omari; Abdullah M. Alsharekh; Michael D. Petraglia (2018). "The expansion of later Acheulean hominins into the Arabian Peninsula". Scientific Reports. 8 (1): Article number 17165. Bibcode:2018NatSR...817165S. doi:10.1038/s41598-018-35242-5. PMC 6265249. PMID 30498259.
  416. ^ Kumar Akhilesh; Shanti Pappu; Haresh M. Rajapara; Yanni Gunnell; Anil D. Shukla; Ashok K. Singhvi (2018). "Early Middle Palaeolithic culture in India around 385–172 ka reframes Out of Africa models". Nature. 554 (7690): 97–101. Bibcode:2018Natur.554...97A. doi:10.1038/nature25444. PMID 29388951. S2CID 4447452.
  417. ^ T. Ingicco; G. D. van den Bergh; C. Jago-on; J.-J. Bahain; M. G. Chacón; N. Amano; H. Forestier; C. King; K. Manalo; S. Nomade; A. Pereira; M. C. Reyes; A.-M. Sémah; Q. Shao; P. Voinchet; C. Falguères; P. C. H. Albers; M. Lising; G. Lyras; D. Yurnaldi; P. Rochette; A. Bautista; J. de Vos (2018). "Earliest known hominin activity in the Philippines by 709 thousand years ago". Nature. 557 (7704): 233–237. Bibcode:2018Natur.557..233I. doi:10.1038/s41586-018-0072-8. PMID 29720661. S2CID 13742336.
  418. ^ Steven R. Holen; Thomas A. Deméré; Daniel C. Fisher; Richard Fullagar; James B. Paces; George T. Jefferson; Jared M. Beeton; Richard A. Cerutti; Adam N. Rountrey; Lawrence Vescera; Kathleen A. Holen (2017). "A 130,000-year-old archaeological site in southern California, USA". Nature. 544 (7651): 479–483. Bibcode:2017Natur.544..479H. doi:10.1038/nature22065. PMID 28447646. S2CID 205255425.
  419. ^ Joseph V. Ferraro; Katie M. Binetti; Logan A. Wiest; Donald Esker; Lori E. Baker; Steven L. Forman (2018). "Contesting early archaeology in California". Nature. 554 (7691): E1 – E2. Bibcode:2018Natur.554E...1F. doi:10.1038/nature25165. PMID 29420468. S2CID 205263114.
  420. ^ Steven R. Holen; Thomas A. Deméré; Daniel C. Fisher; Richard Fullagar; James B. Paces; George T. Jefferson; Jared M. Beeton; Richard A. Cerutti; Adam N. Rountrey; Lawrence Vescera; Kathleen A. Holen (2018). "Holen et al. reply". Nature. 554 (7691): E3. Bibcode:2018Natur.554E...3H. doi:10.1038/nature25166. PMID 29420475. S2CID 4466451.
  421. ^ Luc Doyon; Zhanyang Li; Hao Li; Francesco d'Errico (2018). "Discovery of circa 115,000-year-old bone retouchers at Lingjing, Henan, China". PLOS ONE. 13 (3): e0194318. Bibcode:2018PLoSO..1394318D. doi:10.1371/journal.pone.0194318. PMC 5847243. PMID 29529079.
  422. ^ Abdeljalil Bouzouggar; Louise T. Humphrey; Nick Barton; Simon A. Parfitt; Laine Clark Balzan; Jean-Luc Schwenninger; Mohammed Abdeljalil El Hajraoui; Roland Nespoulet; Silvia M. Bello (2018). "90,000 year-old specialised bone technology in the Aterian Middle Stone Age of North Africa". PLOS ONE. 13 (10): e0202021. Bibcode:2018PLoSO..1302021B. doi:10.1371/journal.pone.0202021. PMC 6169849. PMID 30281602.
  423. ^ Mathieu Duval; Rainer Grün; Josep M. Parés; Laura Martín-Francés; Isidoro Campaña; Jordi Rosell; Qingfeng Shao; Juan Luis Arsuaga; Eudald Carbonell; José María Bermúdez de Castro (2018). "The first direct ESR analysis of a hominin tooth from Atapuerca Gran Dolina TD-6 (Spain) supports the antiquity of Homo antecessor" (PDF). Quaternary Geochronology. 47: 120–137. doi:10.1016/j.quageo.2018.05.001.
  424. ^ Laura Martín-Francés; María Martinón-Torres; Marina Martínez de Pinillos; Cecilia García-Campos; Mario Modesto-Mata; Clément Zanolli; Laura Rodríguez; José María Bermúdez de Castro (2018). "Tooth crown tissue proportions and enamel thickness in Early Pleistocene Homo antecessor molars (Atapuerca, Spain)". PLOS ONE. 13 (10): e0203334. Bibcode:2018PLoSO..1303334M. doi:10.1371/journal.pone.0203334. PMC 6169863. PMID 30281589.
  425. ^ Flavio Altamura; Matthew R. Bennett; Kristiaan D'Août; Sabine Gaudzinski-Windheuser; Rita T. Melis; Sally C. Reynolds; Margherita Mussi (2018). "Archaeology and ichnology at Gombore II-2, Melka Kunture, Ethiopia: everyday life of a mixed-age hominin group 700,000 years ago". Scientific Reports. 8 (1): Article number 2815. Bibcode:2018NatSR...8.2815A. doi:10.1038/s41598-018-21158-7. PMC 5809588. PMID 29434269.
  426. ^ Ricardo Miguel Godinho; Penny Spikins; Paul O'Higgins (2018). "Supraorbital morphology and social dynamics in human evolution". Nature Ecology & Evolution. 2 (6): 956–961. Bibcode:2018NatEE...2..956G. doi:10.1038/s41559-018-0528-0. hdl:10400.1/11513. PMID 29632349. S2CID 4698765.
  427. ^ Sharon R. Browning; Brian L. Browning; Ying Zhou; Serena Tucci; Joshua M. Akey (2018). "Analysis of human sequence data reveals two pulses of archaic Denisovan admixture". Cell. 173 (1): 53–61.e9. doi:10.1016/j.cell.2018.02.031. PMC 5866234. PMID 29551270.
  428. ^ Viviane Slon; Fabrizio Mafessoni; Benjamin Vernot; Cesare de Filippo; Steffi Grote; Bence Viola; Mateja Hajdinjak; Stéphane Peyrégne; Sarah Nagel; Samantha Brown; Katerina Douka; Tom Higham; Maxim B. Kozlikin; Michael V. Shunkov; Anatoly P. Derevianko; Janet Kelso; Matthias Meyer; Kay Prüfer; Svante Pääbo (2018). "The genome of the offspring of a Neanderthal mother and a Denisovan father". Nature. 561 (7721): 113–116. Bibcode:2018Natur.561..113S. doi:10.1038/s41586-018-0455-x. PMC 6130845. PMID 30135579.
  429. ^ José-Miguel Carretero; Laura Rodríguez; Rebeca García-González; Rolf-Michael Quam; Juan-Luis Arsuaga (2018). "Exploring bone volume and skeletal weight in the Middle Pleistocene humans from the Sima de los Huesos site (Sierra de Atapuerca, Spain)". Journal of Anatomy. 233 (6): 740–754. doi:10.1111/joa.12886. PMC 6231173. PMID 30280382.
  430. ^ Bruce L. Hardy; Marie-Hélène Moncel; Jackie Despriée; Gilles Courcimault; Pierre Voinchet (2018). "Middle Pleistocene hominin behavior at the 700ka Acheulean site of la Noira (France)". Quaternary Science Reviews. 199: 60–82. Bibcode:2018QSRv..199...60H. doi:10.1016/j.quascirev.2018.09.013. S2CID 134587527.
  431. ^ Daniel García-Martínez; Nicole Torres-Tamayo; Isabel Torres-Sánchez; Francisco García-Río; Antonio Rosas; Markus Bastir (2018). "Ribcage measurements indicate greater lung capacity in Neanderthals and Lower Pleistocene hominins compared to modern humans". Communications Biology. 1: Article number 117. doi:10.1038/s42003-018-0125-4. PMC 6123625. PMID 30271997.
  432. ^ Biancamaria Aranguren; Anna Revedin; Nicola Amico; Fabio Cavulli; Gianna Giachi; Stefano Grimaldi; Nicola Macchioni; Fabio Santaniello (2018). "Wooden tools and fire technology in the early Neanderthal site of Poggetti Vecchi (Italy)". Proceedings of the National Academy of Sciences of the United States of America. 115 (9): 2054–2059. Bibcode:2018PNAS..115.2054A. doi:10.1073/pnas.1716068115. PMC 5834685. PMID 29432163.
  433. ^ Joseba Rios-Garaizar; Oriol López-Bultó; Eneko Iriarte; Carlos Pérez-Garrido; Raquel Piqué; Arantza Aranburu; María José Iriarte-Chiapusso; Illuminada Ortega-Cordellat; Laurence Bourguignon; Diego Garate; Iñaki Libano (2018). "A Middle Palaeolithic wooden digging stick from Aranbaltza III, Spain". PLOS ONE. 13 (3): e0195044. Bibcode:2018PLoSO..1395044R. doi:10.1371/journal.pone.0195044. PMC 5874079. PMID 29590205.
  434. ^ D. L. Hoffmann; C. D. Standish; M. García-Diez; P. B. Pettitt; J. A. Milton; J. Zilhão; J. J. Alcolea-González; P. Cantalejo-Duarte; H. Collado; R. de Balbín; M. Lorblanchet; J. Ramos-Muñoz; G.-Ch. Weniger; A. W. G. Pike (2018). "U-Th dating of carbonate crusts reveals Neandertal origin of Iberian cave art". Science. 359 (6378): 912–915. Bibcode:2018Sci...359..912H. doi:10.1126/science.aap7778. hdl:10498/21578. PMID 29472483. S2CID 206664238.
  435. ^ David G. Pearce; Adelphine Bonneau (2018). "Trouble on the dating scene". Nature Ecology & Evolution. 2 (6): 925–926. Bibcode:2018NatEE...2..925P. doi:10.1038/s41559-018-0540-4. PMID 29632350. S2CID 4711688.
  436. ^ Dirk L. Hoffmann; Christopher D. Standish; Alistair W. G. Pike; Marcos García-Diez; Paul B. Pettitt; Diego E. Angelucci; Valentín Villaverde; Josefina Zapata; James A. Milton; Javier Alcolea-González; Pedro Cantalejo-Duarte; Hipolito Collado; Rodrigo de Balbín; Michel Lorblanchet; José Ramos-Muñoz; Gerd-Christian Weniger; João Zilhão (2018). "Dates for Neanderthal art and symbolic behaviour are reliable". Nature Ecology & Evolution. 2 (7): 1044–1045. Bibcode:2018NatEE...2.1044H. doi:10.1038/s41559-018-0598-z. hdl:11572/210293. PMID 29942018. S2CID 49404741.
  437. ^ Maxime Aubert; Adam Brumm; Jillian Huntley (2018). "Early dates for 'Neanderthal cave art' may be wrong". Journal of Human Evolution. 125: 215–217. Bibcode:2018JHumE.125..215A. doi:10.1016/j.jhevol.2018.08.004. PMID 30173883. S2CID 52145541.
  438. ^ Dirk L. Hoffmann; Christopher D. Standish; Marcos García-Diez; Paul B. Pettitt; James A. Milton; João Zilhão; Javier J. Alcolea-González; Pedro Cantalejo-Duarte; Hipolito Collado; Rodrigo de Balbín; Michel Lorblanchet; Jose Ramos-Muñoz; Gerd-Christian Weniger; Alistair W.G. Pike (2019). "Response to Aubert et al.'s reply 'Early dates for 'Neanderthal cave art' may be wrong' [J. Hum. Evol. 125 (2018), 215–217]". Journal of Human Evolution. 135: Article 102644. Bibcode:2019JHumE.13502644H. doi:10.1016/j.jhevol.2019.102644. S2CID 202017223.
  439. ^ Ludovic Slimak; Jan Fietzke; Jean-Michel Geneste; Roberto Ontañón (2018). "Comment on "U-Th dating of carbonate crusts reveals Neandertal origin of Iberian cave art"". Science. 361 (6408): eaau1371. doi:10.1126/science.aau1371. PMID 30237321. S2CID 52309952.
  440. ^ D. L. Hoffmann; C. D. Standish; M. García-Diez; P. B. Pettitt; J. A. Milton; J. Zilhão; J. J. Alcolea-González; P. Cantalejo-Duarte; H. Collado; R. de Balbín; M. Lorblanchet; J. Ramos-Muñoz; G.-Ch. Weniger; A. W. G. Pike (2018). "Response to Comment on "U-Th dating of carbonate crusts reveals Neandertal origin of Iberian cave art"". Science. 362 (6411): eaau1736. doi:10.1126/science.aau1736. hdl:10451/36567. PMID 30309914. S2CID 52966370.
  441. ^ Randall White; Gerhard Bosinski; Raphaëlle Bourrillon; Jean Clottes; Margaret W. Conkey; Soledad Corchón Rodriguez; Miguel Cortés-Sánchez; Marco de la Rasilla Vives; Brigitte Delluc; Gilles Delluc; Valérie Feruglio; Harald Floss; Pascal Foucher; Carole Fritz; Oscar Fuentes; Diego Garate; Jesús González Gómez; Manuel R. González-Morales; María González-Pumariega Solis; Marc Groenen; Jacques Jaubert; María Aránzazu Martinez-Aguirre; María-Ángeles Medina Alcaide; Oscar Moro Abadia; Roberto Ontañón Peredo; Elena Paillet-Man-Estier; Patrick Paillet; Stéphane Petrognani; Romain Pigeaud; Geneviève Pinçon; Frédéric Plassard; Sergio Ripoll López; Olivia Rivero Vilá; Eric Robert; Aitor Ruiz-Redondo; Juan F. Ruiz López; Cristina San Juan-Foucher; José Luis Sanchidrián Torti; Georges Sauvet; María Dolores Simón-Vallejo; Gilles Tosello; Pilar Utrilla; Denis Vialou; Mark D. Willis (2020). "Still no archaeological evidence that Neanderthals created Iberian cave art". Journal of Human Evolution. 144: Article 102640. Bibcode:2020JHumE.14402640W. doi:10.1016/j.jhevol.2019.102640. S2CID 208305629.
  442. ^ Dirk L. Hoffmann; Christopher D. Standish; Marcos García-Diez; Paul B. Pettitt; James A. Milton; João Zilhão; Javier J. Alcolea-González; Pedro Cantalejo-Duarte; Hipolito Collado; Rodrigo de Balbín; Michel Lorblanchet; Jose Ramos-Muñoz; Gerd-Christian Weniger; Alistair W.G. Pike (2020). "Response to White et al.'s reply: 'Still no archaeological evidence that Neanderthals created Iberian cave art' [J. Hum. Evol. (2020) 102640]". Journal of Human Evolution. 144: Article 102810. Bibcode:2020JHumE.14402810H. doi:10.1016/j.jhevol.2020.102810. PMID 32451090. S2CID 218895333.
  443. ^ Dirk L. Hoffmann; Diego E. Angelucci; Valentín Villaverde; Josefina Zapata; João Zilhão (2018). "Symbolic use of marine shells and mineral pigments by Iberian Neandertals 115,000 years ago". Science Advances. 4 (2): eaar5255. Bibcode:2018SciA....4.5255H. doi:10.1126/sciadv.aar5255. PMC 5833998. PMID 29507889.
  444. ^ Mateja Hajdinjak; Qiaomei Fu; Alexander Hübner; Martin Petr; Fabrizio Mafessoni; Steffi Grote; Pontus Skoglund; Vagheesh Narasimham; Hélène Rougier; Isabelle Crevecoeur; Patrick Semal; Marie Soressi; Sahra Talamo; Jean-Jacques Hublin; Ivan Gušić; Željko Kućan; Pavao Rudan; Liubov V. Golovanova; Vladimir B. Doronichev; Cosimo Posth; Johannes Krause; Petra Korlević; Sarah Nagel; Birgit Nickel; Montgomery Slatkin; Nick Patterson; David Reich; Kay Prüfer; Matthias Meyer; Svante Pääbo; Janet Kelso (2018). "Reconstructing the genetic history of late Neanderthals". Nature. 555 (7698): 652–656. Bibcode:2018Natur.555..652H. doi:10.1038/nature26151. PMC 6485383. PMID 29562232.
  445. ^ Marylène Patou-Mathis; Ivor Karavanić; Fred H. Smith (2018). "The evidence from Vindija Cave (Croatia) reveals diversity of Neandertal behaviour in Europe". Quaternary International. 494: 314–326. Bibcode:2018QuInt.494..314P. doi:10.1016/j.quaint.2018.06.023. S2CID 134508237.
  446. ^ Stephen Wroe; William C. H. Parr; Justin A. Ledogar; Jason Bourke; Samuel P. Evans; Luca Fiorenza; Stefano Benazzi; Jean-Jacques Hublin; Chris Stringer; Ottmar Kullmer; Michael Curry; Todd C. Rae; Todd R. Yokley (2018). "Computer simulations show that Neanderthal facial morphology represents adaptation to cold and high energy demands, but not heavy biting". Proceedings of the Royal Society B: Biological Sciences. 285 (1876): 20180085. doi:10.1098/rspb.2018.0085. PMC 5904316. PMID 29618551.
  447. ^ Rachael C. Bible; A. Townsend Peterson (2018). "Compatible ecological niche signals between biological and archaeological datasets for late-surviving Neandertals". American Journal of Physical Anthropology. 166 (4): 968–974. doi:10.1002/ajpa.23482. PMID 29664998.
  448. ^ Sabine Gaudzinski-Windheuser; Elisabeth S. Noack; Eduard Pop; Constantin Herbst; Johannes Pfleging; Jonas Buchli; Arne Jacob; Frieder Enzmann; Lutz Kindler; Radu Iovita; Martin Street; Wil Roebroeks (2018). "Evidence for close-range hunting by last interglacial Neanderthals". Nature Ecology & Evolution. 2 (7): 1087–1092. Bibcode:2018NatEE...2.1087G. doi:10.1038/s41559-018-0596-1. PMID 29942012. S2CID 49414561.
  449. ^ D. Wolf; T. Kolb; M. Alcaraz-Castaño; S. Heinrich; P. Baumgart; R. Calvo; J. Sánchez; K. Ryborz; I. Schäfer; M. Bliedtner; R. Zech; L. Zöller; D. Faust (2018). "Climate deteriorations and Neanderthal demise in interior Iberia". Scientific Reports. 8 (1): Article number 7048. Bibcode:2018NatSR...8.7048W. doi:10.1038/s41598-018-25343-6. PMC 5935692. PMID 29728579.
  450. ^ J.S. Carrión; J. Ochando; S. Fernández; R. Blasco; J. Rosell; M. Munuera; G. Amorós; I. Martín-Lerma; S. Finlayson; F. Giles; R. Jennings; G. Finlayson; F. Giles-Pacheco; J. Rodríguez-Vidal; C. Finlayson (2018). "Last Neanderthals in the warmest refugium of Europe: Palynological data from Vanguard Cave" (PDF). Review of Palaeobotany and Palynology. 259: 63–80. Bibcode:2018RPaPa.259...63C. doi:10.1016/j.revpalbo.2018.09.007. S2CID 135278171.
  451. ^ Asier Gómez-Olivencia; Nohemi Sala; Carmen Núñez-Lahuerta; Alfred Sanchis; Mikel Arlegi; Joseba Rios-Garaizar (2018). "First data of Neandertal bird and carnivore exploitation in the Cantabrian Region (Axlor; Barandiaran excavations; Dima, Biscay, Northern Iberian Peninsula)". Scientific Reports. 8 (1): Article number 10551. Bibcode:2018NatSR...810551G. doi:10.1038/s41598-018-28377-y. PMC 6043621. PMID 30002396.
  452. ^ A. C. Sorensen; E. Claud; M. Soressi (2018). "Neandertal fire-making technology inferred from microwear analysis". Scientific Reports. 8 (1): Article number 10065. Bibcode:2018NatSR...810065S. doi:10.1038/s41598-018-28342-9. PMC 6053370. PMID 30026576.
  453. ^ Fotios Alexandros Karakostis; Gerhard Hotz; Vangelis Tourloukis; Katerina Harvati (2018). "Evidence for precision grasping in Neandertal daily activities". Science Advances. 4 (9): eaat2369. Bibcode:2018SciA....4.2369K. doi:10.1126/sciadv.aat2369. PMC 6157967. PMID 30263956.
  454. ^ Asier Gómez-Olivencia; Alon Barash; Daniel García-Martínez; Mikel Arlegi; Patricia Kramer; Markus Bastir; Ella Been (2018). "3D virtual reconstruction of the Kebara 2 Neandertal thorax". Nature Communications. 9 (1): Article number 4387. Bibcode:2018NatCo...9.4387G. doi:10.1038/s41467-018-06803-z. PMC 6207772. PMID 30377294.
  455. ^ Anna E. Goldfield; Ross Booton; John M. Marston (2018). "Modeling the role of fire and cooking in the competitive exclusion of Neanderthals". Journal of Human Evolution. 124: 91–104. Bibcode:2018JHumE.124...91G. doi:10.1016/j.jhevol.2018.07.006. PMID 30177445. S2CID 52147357.
  456. ^ Michael Staubwasser; Virgil Drăgușin; Bogdan P. Onac; Sergey Assonov; Vasile Ersek; Dirk L. Hoffmann; Daniel Veres (2018). "Impact of climate change on the transition of Neanderthals to modern humans in Europe". Proceedings of the National Academy of Sciences of the United States of America. 115 (37): 9116–9121. Bibcode:2018PNAS..115.9116S. doi:10.1073/pnas.1808647115. PMC 6140518. PMID 30150388.
  457. ^ Brad Gravina; François Bachellerie; Solène Caux; Emmanuel Discamps; Jean-Philippe Faivre; Aline Galland; Alexandre Michel; Nicolas Teyssandier; Jean-Guillaume Bordes (2018). "No reliable evidence for a Neanderthal-Châtelperronian association at La Roche-à-Pierrot, Saint-Césaire". Scientific Reports. 8 (1): Article number 15134. Bibcode:2018NatSR...815134G. doi:10.1038/s41598-018-33084-9. PMC 6181958. PMID 30310091.
  458. ^ Takanori Kochiyama; Naomichi Ogihara; Hiroki C. Tanabe; Osamu Kondo; Hideki Amano; Kunihiro Hasegawa; Hiromasa Suzuki; Marcia S. Ponce de León; Christoph P. E. Zollikofer; Markus Bastir; Chris Stringer; Norihiro Sadato; Takeru Akazawa (2018). "Reconstructing the Neanderthal brain using computational anatomy". Scientific Reports. 8 (1): Article number 6296. Bibcode:2018NatSR...8.6296K. doi:10.1038/s41598-018-24331-0. PMC 5919901. PMID 29700382.
  459. ^ Tanya M. Smith; Christine Austin; Daniel R. Green; Renaud Joannes-Boyau; Shara Bailey; Dani Dumitriu; Stewart Fallon; Rainer Grün; Hannah F. James; Marie-Hélène Moncel; Ian S. Williams; Rachel Wood; Manish Arora (2018). "Wintertime stress, nursing, and lead exposure in Neanderthal children". Science Advances. 4 (10): eaau9483. Bibcode:2018SciA....4.9483S. doi:10.1126/sciadv.aau9483. PMC 6209393. PMID 30402544.
  460. ^ Clément Zanolli; María Martinón-Torres; Federico Bernardini; Giovanni Boschian; Alfredo Coppa; Diego Dreossi; Lucia Mancini; Marina Martínez de Pinillos; Laura Martín-Francés; José María Bermúdez de Castro; Carlo Tozzi; Claudio Tuniz; Roberto Macchiarelli (2018). "The Middle Pleistocene (MIS 12) human dental remains from Fontana Ranuccio (Latium) and Visogliano (Friuli-Venezia Giulia), Italy. A comparative high resolution endostructural assessment". PLOS ONE. 13 (10): e0189773. Bibcode:2018PLoSO..1389773Z. doi:10.1371/journal.pone.0189773. PMC 6169847. PMID 30281595.
  461. ^ David Enard; Dmitri A. Petrov (2018). "Evidence that RNA viruses drove adaptive introgression between Neanderthals and modern humans". Cell. 175 (2): 360–371.e13. doi:10.1016/j.cell.2018.08.034. PMC 6176737. PMID 30290142.
  462. ^ Judith Beier; Nils Anthes; Joachim Wahl; Katerina Harvati (2018). "Similar cranial trauma prevalence among Neanderthals and Upper Palaeolithic modern humans". Nature. 563 (7733): 686–690. Bibcode:2018Natur.563..686B. doi:10.1038/s41586-018-0696-8. PMID 30429606. S2CID 53306963.
  463. ^ S. Prat; S. Péan; L. Crépin; S. Puaud; D.G. Drucker; M. Lázničková-Galetová; J. Van der Plicht; H. Valladas; C. Verna; M. Patou-Mathis; M. Lebon; A. Yanevich (2018). "The first anatomically modern humans from South-Eastern Europe. Contributions from the Buran-Kaya III Site (Crimea)". Bulletins et Mémoires de la Société d'Anthropologie de Paris. 30 (3–4): 169–179. doi:10.3166/bmsap-2018-0032 (inactive 2024-11-18).{{cite journal}}: CS1 maint: DOI inactive as of November 2024 (link)
  464. ^ Irene Esteban; Curtis W. Marean; Erich C. Fisher; Panagiotis Karkanas; Dan Cabanes; Rosa M. Albert (2018). "Phytoliths as an indicator of early modern humans plant gathering strategies, fire fuel and site occupation intensity during the Middle Stone Age at Pinnacle Point 5-6 (south coast, South Africa)". PLOS ONE. 13 (6): e0198558. Bibcode:2018PLoSO..1398558E. doi:10.1371/journal.pone.0198558. PMC 5986156. PMID 29864147.
  465. ^ Henry F. Lamb; C. Richard Bates; Charlotte L. Bryant; Sarah J. Davies; Dei G. Huws; Michael H. Marshall; Helen M. Roberts (2018). "150,000-year palaeoclimate record from northern Ethiopia supports early, multiple dispersals of modern humans from Africa". Scientific Reports. 8 (1): Article number 1077. Bibcode:2018NatSR...8.1077L. doi:10.1038/s41598-018-19601-w. PMC 5773494. PMID 29348464.
  466. ^ Eleanor M.L. Scerri; Mark G. Thomas; Andrea Manica; Philipp Gunz; Jay T. Stock; Chris Stringer; Matt Grove; Huw S. Groucutt; Axel Timmermann; G. Philip Rightmire; Francesco d'Errico; Christian A. Tryon; Nick A. Drake; Alison S. Brooks; Robin W. Dennell; Richard Durbin; Brenna M. Henn; Julia Lee-Thorp; Peter deMenocal; Michael D. Petraglia; Jessica C. Thompson; Aylwyn Scally; Lounès Chikhi (2018). "Did our species evolve in subdivided populations across Africa, and why does it matter?". Trends in Ecology & Evolution. 33 (8): 582–594. Bibcode:2018TEcoE..33..582S. doi:10.1016/j.tree.2018.05.005. PMC 6092560. PMID 30007846.
  467. ^ Patrick Roberts; Brian A. Stewart (2018). "Defining the 'generalist specialist' niche for Pleistocene Homo sapiens". Nature Human Behaviour. 2 (8): 542–550. doi:10.1038/s41562-018-0394-4. PMID 31209320. S2CID 51881319.
  468. ^ Simon Neubauer; Jean-Jacques Hublin; Philipp Gunz (2018). "The evolution of modern human brain shape". Science Advances. 4 (1): eaao5961. Bibcode:2018SciA....4.5961N. doi:10.1126/sciadv.aao5961. PMC 5783678. PMID 29376123.
  469. ^ Charles W. Helm; Richard T. McCrea; Hayley C. Cawthra; Martin G. Lockley; Richard M. Cowling; Curtis W. Marean; Guy H. H. Thesen; Tammy S. Pigeon; Sinèad Hattingh (2018). "A new Pleistocene hominin tracksite from the Cape south coast, South Africa". Scientific Reports. 8 (1): Article number 3772. Bibcode:2018NatSR...8.3772H. doi:10.1038/s41598-018-22059-5. PMC 5830700. PMID 29491482.
  470. ^ Finn A. Viehberg; Janna Just; Jonathan R. Dean; Bernd Wagner; Sven Oliver Franz; Nicole Klasen; Thomas Kleinen; Patrick Ludwig; Asfawossen Asrat; Henry F. Lamb; Melanie J. Leng; Janet Rethemeyer; Antoni E. Milodowski; Martin Claussen; Frank Schäbitz (2018). "Environmental change during MIS4 and MIS 3 opened corridors in the Horn of Africa for Homo sapiens expansion". Quaternary Science Reviews. 202: 139–153. Bibcode:2018QSRv..202..139V. doi:10.1016/j.quascirev.2018.09.008. hdl:21.11116/0000-0002-4B3E-6.
  471. ^ Israel Hershkovitz; Gerhard W. Weber; Rolf Quam; Mathieu Duval; Rainer Grün; Leslie Kinsley; Avner Ayalon; Miryam Bar-Matthews; Helene Valladas; Norbert Mercier; Juan Luis Arsuaga; María Martinón-Torres; José María Bermúdez de Castro; Cinzia Fornai; Laura Martín-Francés; Rachel Sarig; Hila May; Viktoria A. Krenn; Viviane Slon; Laura Rodríguez; Rebeca García; Carlos Lorenzo; Jose Miguel Carretero; Amos Frumkin; Ruth Shahack-Gross; Daniella E. Bar-Yosef Mayer; Yaming Cui; Xinzhi Wu; Natan Peled; Iris Groman-Yaroslavski; Lior Weissbrod; Reuven Yeshurun; Alexander Tsatskin; Yossi Zaidner; Mina Weinstein-Evron (2018). "The earliest modern humans outside Africa". Science. 359 (6374): 456–459. Bibcode:2018Sci...359..456H. doi:10.1126/science.aap8369. hdl:10072/372670. PMID 29371468. S2CID 206664380.
  472. ^ Warren D. Sharp; James B. Paces (2018). "Comment on "The earliest modern humans outside Africa"". Science. 362 (6413): eaat6598. Bibcode:2018Sci...362.6598S. doi:10.1126/science.aat6598. PMID 30361342. S2CID 53088050.
  473. ^ Israel Hershkovitz; Mathieu Duval; Rainer Grün; Norbert Mercier; Helene Valladas; Avner Ayalon; Miryam Bar-Matthews; Gerhard W. Weber; Rolf Quam; Yossi Zaidner; Mina Weinstein-Evron (2018). "Response to Comment on "The earliest modern humans outside Africa"". Science. 362 (6413): eaat8964. Bibcode:2018Sci...362.8964H. doi:10.1126/science.aat8964. hdl:10072/388475. PMID 30361343. S2CID 53087975.
  474. ^ Huw S. Groucutt; Rainer Grün; Iyad A. S. Zalmout; Nick A. Drake; Simon J. Armitage; Ian Candy; Richard Clark-Wilson; Julien Louys; Paul S. Breeze; Mathieu Duval; Laura T. Buck; Tracy L. Kivell; Emma Pomeroy; Nicholas B. Stephens; Jay T. Stock; Mathew Stewart; Gilbert J. Price; Leslie Kinsley; Wing Wai Sung; Abdullah Alsharekh; Abdulaziz Al-Omari; Muhammad Zahir; Abdullah M. Memesh; Ammar J. Abdulshakoor; Abdu M. Al-Masari; Ahmed A. Bahameem; Khaled M. S. Al Murayyi; Badr Zahrani; Eleanor L. M. Scerri; Michael D. Petraglia (2018). "Homo sapiens in Arabia by 85,000 years ago". Nature Ecology & Evolution. 2 (5): 800–809. Bibcode:2018NatEE...2..800G. doi:10.1038/s41559-018-0518-2. PMC 5935238. PMID 29632352.
  475. ^ Chad L. Yost; Lily J. Jackson; Jeffery R. Stone; Andrew S. Cohen (2018). "Subdecadal phytolith and charcoal records from Lake Malawi, East Africa imply minimal effects on human evolution from the ~74 ka Toba supereruption". Journal of Human Evolution. 116: 75–94. Bibcode:2018JHumE.116...75Y. doi:10.1016/j.jhevol.2017.11.005. PMID 29477183.
  476. ^ Smith, Eugene I.; Jacobs, Zenobia; Johnsen, Racheal; Ren, Minghua; Fisher, Erich C.; Oestmo, Simen; Wilkins, Jayne; Harris, Jacob A.; Karkanas, Panagiotis; Fitch, Shelby; Ciravolo, Amber; Keenan, Deborah; Cleghorn, Naomi; Lane, Christine S.; Matthews, Thalassa; Curtis W. Marean (2018). "Humans thrived in South Africa through the Toba eruption about 74,000 years ago". Nature. 555 (7697): 511–515. Bibcode:2018Natur.555..511S. doi:10.1038/nature25967. PMID 29531318. S2CID 4443481.
  477. ^ Ceri Shipton; Patrick Roberts; Will Archer; Simon J. Armitage; Caesar Bita; James Blinkhorn; Colin Courtney-Mustaphi; Alison Crowther; Richard Curtis; Francesco d' Errico; Katerina Douka; Patrick Faulkner; Huw S. Groucutt; Richard Helm; Andy I. R Herries; Severinus Jembe; Nikos Kourampas; Julia Lee-Thorp; Rob Marchant; Julio Mercader; Africa Pitarch Marti; Mary E. Prendergast; Ben Rowson; Amini Tengeza; Ruth Tibesasa; Tom S. White; Michael D. Petraglia; Nicole Boivin (2018). "78,000-year-old record of Middle and Later stone age innovation in an East African tropical forest". Nature Communications. 9 (1): Article number 1832. Bibcode:2018NatCo...9.1832S. doi:10.1038/s41467-018-04057-3. PMC 5943315. PMID 29743572.
  478. ^ Christopher S. Henshilwood; Francesco d'Errico; Karen L. van Niekerk; Laure Dayet; Alain Queffelec; Luca Pollarolo (2018). "An abstract drawing from the 73,000-year-old levels at Blombos Cave, South Africa" (PDF). Nature. 562 (7725): 115–118. Bibcode:2018Natur.562..115H. doi:10.1038/s41586-018-0514-3. PMID 30209394. S2CID 52197496.
  479. ^ Yuri Dublyansky; Gina E. Moseley; Yuri Lyakhnitsky; Hai Cheng; Lawrence R. Edwards; Denis Scholz; Gabriella Koltai; Christoph Spötl (2018). "Late Palaeolithic cave art and permafrost in the Southern Ural". Scientific Reports. 8 (1): Article number 12080. Bibcode:2018NatSR...812080D. doi:10.1038/s41598-018-30049-w. PMC 6089975. PMID 30104606.
  480. ^ Miguel Cortés-Sánchez; José Antonio Riquelme-Cantal; María Dolores Simón-Vallejo; Rubén Parrilla Giráldez; Carlos P. Odriozola; Lydia Calle Román; José S. Carrión; Guadalupe Monge Gómez; Joaquín Rodríguez Vidal; Juan José Moyano Campos; Fernando Rico Delgado; Juan Enrique Nieto Julián; Daniel Antón García; M. Aránzazu Martínez-Aguirre; Fernando Jiménez Barredo; Francisco N. Cantero-Chinchilla (2018). "Pre-Solutrean rock art in southernmost Europe: Evidence from Las Ventanas Cave (Andalusia, Spain)". PLOS ONE. 13 (10): e0204651. Bibcode:2018PLoSO..1304651C. doi:10.1371/journal.pone.0204651. PMC 6192576. PMID 30332432.
  481. ^ M. Aubert; P. Setiawan; A. A. Oktaviana; A. Brumm; P. H. Sulistyarto; E. W. Saptomo; B. Istiawan; T. A. Ma'rifat; V. N. Wahyuono; F. T. Atmoko; J.-X. Zhao; J. Huntley; P. S. C. Taçon; D. L. Howard; H. E. A. Brand (2018). "Palaeolithic cave art in Borneo". Nature. 564 (7735): 254–257. Bibcode:2018Natur.564..254A. doi:10.1038/s41586-018-0679-9. PMID 30405242. S2CID 53208538.
  482. ^ Elizabeth C. Velliky; Martin Porr; Nicholas J. Conard (2018). "Ochre and pigment use at Hohle Fels cave: Results of the first systematic review of ochre and ochre-related artefacts from the Upper Palaeolithic in Germany". PLOS ONE. 13 (12): e0209874. Bibcode:2018PLoSO..1309874V. doi:10.1371/journal.pone.0209874. PMC 6307870. PMID 30589914.
  483. ^ X. L. Zhang; B. B. Ha; S. J. Wang; Z. J. Chen; J. Y. Ge; H. Long; W. He; W. Da; X. M. Nian; M. J. Yi; X. Y. Zhou; P. Q. Zhang; Y. S. Jin; O. Bar-Yosef; J. W. Olsen; X. Gao (2018). "The earliest human occupation of the high-altitude Tibetan Plateau 40 thousand to 30 thousand years ago". Science. 362 (6418): 1049–1051. Bibcode:2018Sci...362.1049Z. doi:10.1126/science.aat8824. PMID 30498126. S2CID 54165488.
  484. ^ Rathnasiri Premathilake; Chris O. Hunt (2018). "Late Pleistocene humans in Sri Lanka used plant resources: A phytolith record from Fahien rock shelter" (PDF). Palaeogeography, Palaeoclimatology, Palaeoecology. 505: 1–17. Bibcode:2018PPP...505....1P. doi:10.1016/j.palaeo.2018.05.015. S2CID 133979583.
  485. ^ Adam Brumm; Budianto Hakim; Muhammad Ramli; Maxime Aubert; Gerrit D. van den Bergh; Bo Li; Basran Burhan; Andi Muhammad Saiful; Linda Siagian; Ratno Sardi; Andi Jusdi; Abdullah; Andi Pampang Mubarak; Mark W. Moore; Richard G. Roberts; Jian-xin Zhao; David McGahan; Brian G. Jones; Yinika Perston; Katherine Szabó; M. Irfan Mahmud; Kira Westaway; Jatmiko; E. Wahyu Saptomo; Sander van der Kaars; Rainer Grün; Rachel Wood; John Dodson; Michael J. Morwood (2018). "A reassessment of the early archaeological record at Leang Burung 2, a Late Pleistocene rock-shelter site on the Indonesian island of Sulawesi". PLOS ONE. 13 (4): e0193025. Bibcode:2018PLoSO..1393025B. doi:10.1371/journal.pone.0193025. PMC 5894965. PMID 29641524.
  486. ^ Chris Clarkson; Zenobia Jacobs; Ben Marwick; Richard Fullagar; Lynley Wallis; Mike Smith; Richard G. Roberts; Elspeth Hayes; Kelsey Lowe; Xavier Carah; S. Anna Florin; Jessica McNeil; Delyth Cox; Lee J. Arnold; Quan Hua; Jillian Huntley; Helen E. A. Brand; Tiina Manne; Andrew Fairbairn; James Shulmeister; Lindsey Lyle; Makiah Salinas; Mara Page; Kate Connell; Gayoung Park; Kasih Norman; Tessa Murphy; Colin Pardoe (2017). "Human occupation of northern Australia by 65,000 years ago". Nature. 547 (7663): 306–310. Bibcode:2017Natur.547..306C. doi:10.1038/nature22968. hdl:2440/107043. PMID 28726833. S2CID 205257212.
  487. ^ James F. O'Connell; Jim Allen; Martin A. J. Williams; Alan N. Williams; Chris S. M. Turney; Nigel A. Spooner; Johan Kamminga; Graham Brown; Alan Cooper (2018). "When did Homo sapiens first reach Southeast Asia and Sahul?". Proceedings of the National Academy of Sciences of the United States of America. 115 (34): 8482–8490. Bibcode:2018PNAS..115.8482O. doi:10.1073/pnas.1808385115. PMC 6112744. PMID 30082377.
  488. ^ Shimona Kealy; Julien Louys; Sue O'Connor (2018). "Least-cost pathway models indicate northern human dispersal from Sunda to Sahul". Journal of Human Evolution. 125: 59–70. Bibcode:2018JHumE.125...59K. doi:10.1016/j.jhevol.2018.10.003. hdl:1885/230317. PMID 30502898.
  489. ^ Jo McDonald; Wendy Reynen; Fiona Petchey; Kane Ditchfield; Chae Byrne; Dorcas Vannieuwenhuyse; Matthias Leopold; Peter Veth (2018). "Karnatukul (Serpent's Glen): A new chronology for the oldest site in Australia's Western Desert". PLOS ONE. 13 (9): e0202511. Bibcode:2018PLoSO..1302511M. doi:10.1371/journal.pone.0202511. PMC 6145509. PMID 30231025.
  490. ^ Marieke van de Loosdrecht; Abdeljalil Bouzouggar; Louise Humphrey; Cosimo Posth; Nick Barton; Ayinuer Aximu-Petri; Birgit Nickel; Sarah Nagel; El Hassan Talbi; Mohammed Abdeljalil El Hajraoui; Saaïd Amzazi; Jean-Jacques Hublin; Svante Pääbo; Stephan Schiffels; Matthias Meyer; Wolfgang Haak; Choongwon Jeong; Johannes Krause (2018). "Pleistocene North African genomes link Near Eastern and sub-Saharan African human populations". Science. 360 (6388): 548–552. Bibcode:2018Sci...360..548V. doi:10.1126/science.aar8380. PMID 29545507. S2CID 206666517.
  491. ^ Amaia Arranz-Otaegui; Lara Gonzalez Carretero; Monica N. Ramsey; Dorian Q. Fuller; Tobias Richter (2018). "Archaeobotanical evidence reveals the origins of bread 14,400 years ago in northeastern Jordan". Proceedings of the National Academy of Sciences of the United States of America. 115 (31): 7925–7930. Bibcode:2018PNAS..115.7925A. doi:10.1073/pnas.1801071115. PMC 6077754. PMID 30012614.
  492. ^ James Hansford; Patricia C. Wright; Armand Rasoamiaramanana; Ventura R. Pérez; Laurie R. Godfrey; David Errickson; Tim Thompson; Samuel T. Turvey (2018). "Early Holocene human presence in Madagascar evidenced by exploitation of avian megafauna". Science Advances. 4 (9): eaat6925. Bibcode:2018SciA....4.6925H. doi:10.1126/sciadv.aat6925. PMC 6135541. PMID 30214938.
  493. ^ Atholl Anderson; Geoffrey Clark; Simon Haberle; Tom Higham; Malgosia Nowak-Kemp; Amy Prendergast; Chantal Radimilahy; Lucien M. Rakotozafy; Ramilisonina; Jean-Luc Schwenninger; Malika Virah-Sawmy; Aaron Camens (2018). "New evidence of megafaunal bone damage indicates late colonization of Madagascar". PLOS ONE. 13 (10): e0204368. Bibcode:2018PLoSO..1304368A. doi:10.1371/journal.pone.0204368. PMC 6179221. PMID 30303989.
  494. ^ Darren Curnoe; Ipoi Datan; Jian-xin Zhao; Charles Leh Moi Ung; Maxime Aubert; Mohammed S. Sauffi; Goh Hsiao Mei; Raynold Mendoza; Paul S. C. Taçon (2018). "Rare Late Pleistocene-early Holocene human mandibles from the Niah Caves (Sarawak, Borneo)". PLOS ONE. 13 (6): e0196633. Bibcode:2018PLoSO..1396633C. doi:10.1371/journal.pone.0196633. PMC 5991356. PMID 29874227.
  495. ^ Leslea J. Hlusko; Joshua P. Carlson; George Chaplin; Scott A. Elias; John F. Hoffecker; Michaela Huffman; Nina G. Jablonski; Tesla A. Monson; Dennis H. O'Rourke; Marin A. Pilloud; G. Richard Scott (2018). "Environmental selection during the last ice age on the mother-to-infant transmission of vitamin D and fatty acids through breast milk". Proceedings of the National Academy of Sciences of the United States of America. 115 (19): E4426 – E4432. Bibcode:2018PNAS..115E4426H. doi:10.1073/pnas.1711788115. PMC 5948952. PMID 29686092.
  496. ^ Ben A. Potter; James F. Baichtal; Alwynne B. Beaudoin; Lars Fehren-Schmitz; C. Vance Haynes; Vance T. Holliday; Charles E. Holmes; John W. Ives; Robert L. Kelly; Bastien Llamas; Ripan S. Malhi; D. Shane Miller; David Reich; Joshua D. Reuther; Stephan Schiffels; Todd A. Surovell (2018). "Current evidence allows multiple models for the peopling of the Americas". Science Advances. 4 (8): eaat5473. Bibcode:2018SciA....4.5473P. doi:10.1126/sciadv.aat5473. PMC 6082647. PMID 30101195.
  497. ^ Alia J. Lesnek; Jason P. Briner; Charlotte Lindqvist; James F. Baichtal; Timothy H. Heaton (2018). "Deglaciation of the Pacific coastal corridor directly preceded the human colonization of the Americas". Science Advances. 4 (5): eaar5040. Bibcode:2018SciA....4.5040L. doi:10.1126/sciadv.aar5040. PMC 5976267. PMID 29854947.
  498. ^ Heather L. Smith; Ted Goebel (2018). "Origins and spread of fluted-point technology in the Canadian Ice-Free Corridor and eastern Beringia". Proceedings of the National Academy of Sciences of the United States of America. 115 (16): 4116–4121. Bibcode:2018PNAS..115.4116S. doi:10.1073/pnas.1800312115. PMC 5910867. PMID 29610336.
  499. ^ Duncan McLaren; Daryl Fedje; Angela Dyck; Quentin Mackie; Alisha Gauvreau; Jenny Cohen (2018). "Terminal Pleistocene epoch human footprints from the Pacific coast of Canada". PLOS ONE. 13 (3): e0193522. Bibcode:2018PLoSO..1393522M. doi:10.1371/journal.pone.0193522. PMC 5873988. PMID 29590165.
  500. ^ David Bustos; Jackson Jakeway; Tommy M. Urban; Vance T. Holliday; Brendan Fenerty; David A. Raichlen; Marcin Budka; Sally C. Reynolds; Bruce D. Allen; David W. Love; Vincent L. Santucci; Daniel Odess; Patrick Willey; H. Gregory McDonald; Matthew R. Bennett (2018). "Footprints preserve terminal Pleistocene hunt? Human-sloth interactions in North America". Science Advances. 4 (4): eaar7621. Bibcode:2018SciA....4.7621B. doi:10.1126/sciadv.aar7621. PMC 5916513. PMID 29707640.
  501. ^ Thomas J. Williams; Michael B. Collins; Kathleen Rodrigues; William Jack Rink; Nancy Velchoff; Amanda Keen-Zebert; Anastasia Gilmer; Charles D. Frederick; Sergio J. Ayala; Elton R. Prewitt (2018). "Evidence of an early projectile point technology in North America at the Gault Site, Texas, USA". Science Advances. 4 (7): eaar5954. Bibcode:2018SciA....4.5954W. doi:10.1126/sciadv.aar5954. PMC 6040843. PMID 30009257.
  502. ^ Michael R. Waters; Joshua L. Keene; Steven L. Forman; Elton R. Prewitt; David L. Carlson; James E. Wiederhold (2018). "Pre-Clovis projectile points at the Debra L. Friedkin site, Texas—Implications for the Late Pleistocene peopling of the Americas". Science Advances. 4 (10): eaat4505. Bibcode:2018SciA....4.4505W. doi:10.1126/sciadv.aat4505. PMC 6200361. PMID 30397643.
  503. ^ Lorena Becerra-Valdivia; Michael R. Waters; Thomas W. Stafford Jr.; Sarah L. Anzick; Daniel Comeskey; Thibaut Devièse; Thomas Higham (2018). "Reassessing the chronology of the archaeological site of Anzick". Proceedings of the National Academy of Sciences of the United States of America. 115 (27): 7000–7003. Bibcode:2018PNAS..115.7000B. doi:10.1073/pnas.1803624115. PMC 6142201. PMID 29915063.
  504. ^ Moreno-Mayar, J. Víctor; Potter, Ben A.; Vinner, Lasse; Steinrücken, Matthias; Rasmussen, Simon; et al. (2018). "Terminal Pleistocene Alaskan genome reveals first founding population of Native Americans" (PDF). Nature. 553 (7687): 203–207. Bibcode:2018Natur.553..203M. doi:10.1038/nature25173. PMID 29323294. S2CID 4454580.
  505. ^ Becker, Rachel (January 3, 2018). "Ancient baby's DNA reveals completely unknown branch of Native American family tree". The Verge. Retrieved January 4, 2018.
  506. ^ C. L. Scheib; Hongjie Li; Tariq Desai; Vivian Link; Christopher Kendall; Genevieve Dewar; Peter William Griffith; Alexander Mörseburg; John R. Johnson; Amiee Potter; Susan L. Kerr; Phillip Endicott; John Lindo; Marc Haber; Yali Xue; Chris Tyler-Smith; Manjinder S. Sandhu; Joseph G. Lorenz; Tori D. Randall; Zuzana Faltyskova; Luca Pagani; Petr Danecek; Tamsin C. O'Connell; Patricia Martz; Alan S. Boraas; Brian F. Byrd; Alan Leventhal; Rosemary Cambra; Ronald Williamson; Louis Lesage; Brian Holguin; Ernestine Ygnacio-De Soto; JohnTommy Rosas; Mait Metspalu; Jay T. Stock; Andrea Manica; Aylwyn Scally; Daniel Wegmann; Ripan S. Malhi; Toomas Kivisild (2018). "Ancient human parallel lineages within North America contributed to a coastal expansion". Science. 360 (6392): 1024–1027. Bibcode:2018Sci...360.1024S. doi:10.1126/science.aar6851. PMID 29853687. S2CID 44104351.
  507. ^ Cosimo Posth; Nathan Nakatsuka; Iosif Lazaridis; Pontus Skoglund; Swapan Mallick; Thiseas C. Lamnidis; Nadin Rohland; Kathrin Nägele; Nicole Adamski; Emilie Bertolini; Nasreen Broomandkhoshbacht; Alan Cooper; Brendan J. Culleton; Tiago Ferraz; Matthew Ferry; Anja Furtwängler; Wolfgang Haak; Kelly Harkins; Thomas K. Harper; Tábita Hünemeier; Ann Marie Lawson; Bastien Llamas; Megan Michel; Elizabeth Nelson; Jonas Oppenheimer; Nick Patterson; Stephan Schiffels; Jakob Sedig; Kristin Stewardson; Sahra Talamo; Chuan-Chao Wang; Jean-Jacques Hublin; Mark Hubbe; Katerina Harvati; Amalia Nuevo Delaunay; Judith Beier; Michael Francken; Peter Kaulicke; Hugo Reyes-Centeno; Kurt Rademaker; Willa R. Trask; Mark Robinson; Said M. Gutierrez; Keith M. Prufer; Domingo C. Salazar-García; Eliane N. Chim; Lisiane Müller Plumm Gomes; Marcony L. Alves; Andersen Liryo; Mariana Inglez; Rodrigo E. Oliveira; Danilo V. Bernardo; Alberto Barioni; Veronica Wesolowski; Nahuel A. Scheifler; Mario A. Rivera; Claudia R. Plens; Pablo G. Messineo; Levy Figuti; Daniel Corach; Clara Scabuzzo; Sabine Eggers; Paulo DeBlasis; Markus Reindel; César Méndez; Gustavo Politis; Elsa Tomasto-Cagigao; Douglas J. Kennett; André Strauss; Lars Fehren-Schmitz; Johannes Krause; David Reich (2018). "Reconstructing the deep population history of Central and South America". Cell. 175 (5): 1185–1197.e22. doi:10.1016/j.cell.2018.10.027. PMC 6327247. PMID 30415837.
  508. ^ J. Víctor Moreno-Mayar; Lasse Vinner; Peter de Barros Damgaard; Constanza de la Fuente; Jeffrey Chan; Jeffrey P. Spence; Morten E. Allentoft; Tharsika Vimala; Fernando Racimo; Thomaz Pinotti; Simon Rasmussen; Ashot Margaryan; Miren Iraeta Orbegozo; Dorothea Mylopotamitaki; Matthew Wooller; Clement Bataille; Lorena Becerra-Valdivia; David Chivall; Daniel Comeskey; Thibaut Devièse; Donald K. Grayson; Len George; Harold Harry; Verner Alexandersen; Charlotte Primeau; Jon Erlandson; Claudia Rodrigues-Carvalho; Silvia Reis; Murilo Q. R. Bastos; Jerome Cybulski; Carlos Vullo; Flavia Morello; Miguel Vilar; Spencer Wells; Kristian Gregersen; Kasper Lykke Hansen; Niels Lynnerup; Marta Mirazón Lahr; Kurt Kjær; André Strauss; Marta Alfonso-Durruty; Antonio Salas; Hannes Schroeder; Thomas Higham; Ripan S. Malhi; Jeffrey T. Rasic; Luiz Souza; Fabricio R. Santos; Anna-Sapfo Malaspinas; Martin Sikora; Rasmus Nielsen; Yun S. Song; David J. Meltzer; Eske Willerslev (2018). "Early human dispersals within the Americas". Science. 362 (6419): eaav2621. Bibcode:2018Sci...362.2621M. doi:10.1126/science.aav2621. PMID 30409807. S2CID 53241760.
  509. ^ César Méndez; Amalia Nuevo Delaunay; Roxana Seguel; Antonio Maldonado; Ismael Murillo; Douglas Jackson; Eugenio Aspillaga; Roberto Izaurieta; Víctor Méndez; Macarena Fernández (2018). "Late Pleistocene to early Holocene high-quality quartz crystal procurement from the Valiente quarry workshop site (32°S, Chile, South America)". PLOS ONE. 13 (11): e0208062. Bibcode:2018PLoSO..1308062M. doi:10.1371/journal.pone.0208062. PMC 6264839. PMID 30496241.
  510. ^ Jennifer Watling; Myrtle P. Shock; Guilherme Z. Mongeló; Fernando O. Almeida; Thiago Kater; Paulo E. De Oliveira; Eduardo G. Neves (2018). "Direct archaeological evidence for Southwestern Amazonia as an early plant domestication and food production centre". PLOS ONE. 13 (7): e0199868. Bibcode:2018PLoSO..1399868W. doi:10.1371/journal.pone.0199868. PMC 6059402. PMID 30044799.
  511. ^ Rebeka Rmoutilová; Pierre Guyomarc'h; Petr Velemínský; Alena Šefčáková; Mathilde Samsel; Frédéric Santos; Bruno Maureille; Jaroslav Brůžek (2018). "Virtual reconstruction of the Upper Palaeolithic skull from Zlatý Kůň, Czech Republic: Sex assessment and morphological affinity". PLOS ONE. 13 (8): e0201431. Bibcode:2018PLoSO..1301431R. doi:10.1371/journal.pone.0201431. PMC 6116938. PMID 30161127.
  512. ^ Simon Blockley; Ian Candy; Ian Matthews; Pete Langdon; Cath Langdon; Adrian Palmer; Paul Lincoln; Ashley Abrook; Barry Taylor; Chantal Conneller; Alex Bayliss; Alison MacLeod; Laura Deeprose; Chris Darvill; Rebecca Kearney; Nancy Beavan; Richard Staff; Michael Bamforth; Maisie Taylor; Nicky Milner (2018). "The resilience of postglacial hunter-gatherers to abrupt climate change" (PDF). Nature Ecology & Evolution. 2 (5): 810–818. Bibcode:2018NatEE...2..810B. doi:10.1038/s41559-018-0508-4. PMID 29581589. S2CID 4354220.
  513. ^ Ursula Wierer; Simona Arrighi; Stefano Bertola; Günther Kaufmann; Benno Baumgarten; Annaluisa Pedrotti; Patrizia Pernter; Jacques Pelegrin (2018). "The Iceman's lithic toolkit: Raw material, technology, typology and use". PLOS ONE. 13 (6): e0198292. Bibcode:2018PLoSO..1398292W. doi:10.1371/journal.pone.0198292. PMC 6010222. PMID 29924811.
  514. ^ Frank Maixner; Dmitrij Turaev; Amaury Cazenave-Gassiot; Marek Janko; Ben Krause-Kyora; Michael R. Hoopmann; Ulrike Kusebauch; Mark Sartain; Gea Guerriero; Niall O'Sullivan; Matthew Teasdale; Giovanna Cipollini; Alice Paladin; Valeria Mattiangeli; Marco Samadelli; Umberto Tecchiati; Andreas Putzer; Mine Palazoglu; John Meissen; Sandra Lösch; Philipp Rausch; John F. Baines; Bum Jin Kim; Hyun-Joo An; Paul Gostner; Eduard Egarter-Vigl; Peter Malfertheiner; Andreas Keller; Robert W. Stark; Markus Wenk; David Bishop; Daniel G. Bradley; Oliver Fiehn; Lars Engstrand; Robert L. Moritz; Philip Doble; Andre Franke; Almut Nebel; Klaus Oeggl; Thomas Rattei; Rudolf Grimm; Albert Zink (2018). "The Iceman's last meal consisted of fat, wild meat, and cereals". Current Biology. 28 (14): 2348–2355.e9. Bibcode:2018CBio...28E2348M. doi:10.1016/j.cub.2018.05.067. PMC 6065529. PMID 30017480.
  515. ^ Thomas Sutikna; Matthew W. Tocheri; J. Tyler Faith; Jatmiko; Rokus Due Awe; Hanneke J. M.Meijer; E. Wahyu Saptomo; Richard G. Roberts (2018). "The spatio-temporal distribution of archaeological and faunal finds at Liang Bua (Flores, Indonesia) in light of the revised chronology for Homo floresiensis". Journal of Human Evolution. 124: 52–74. Bibcode:2018JHumE.124...52S. doi:10.1016/j.jhevol.2018.07.001. PMID 30173885.
  516. ^ Serena Tucci; Samuel H. Vohr; Rajiv C. McCoy; Benjamin Vernot; Matthew R. Robinson; Chiara Barbieri; Brad J. Nelson; Wenqing Fu; Gludhug A. Purnomo; Herawati Sudoyo; Evan E. Eichler; Guido Barbujani; Peter M. Visscher; Joshua M. Akey; Richard E. Green (2018). "Evolutionary history and adaptation of a human pygmy population of Flores Island, Indonesia". Science. 361 (6401): 511–516. Bibcode:2018Sci...361..511T. doi:10.1126/science.aar8486. PMC 6709593. PMID 30072539.
  517. ^ Erik Trinkaus (2018). "An abundance of developmental anomalies and abnormalities in Pleistocene people". Proceedings of the National Academy of Sciences of the United States of America. 115 (47): 11941–11946. Bibcode:2018PNAS..11511941T. doi:10.1073/pnas.1814989115. PMC 6255161. PMID 30397116.
  518. ^ Kenneth D. Rose; Rachel H. Dunn; Kishor Kumar; Jonathan M.G. Perry; Kristen A. Prufrock; Rajendra S. Rana; Thierry Smith (2018). "New fossils from Tadkeshwar Mine (Gujarat, India) increase primate diversity from the early Eocene Cambay Shale". Journal of Human Evolution. 122: 93–107. Bibcode:2018JHumE.122...93R. doi:10.1016/j.jhevol.2018.05.006. PMID 29886006. S2CID 47012170.
  519. ^ a b c Amy L. Atwater; E. Christopher Kirk (2018). "New middle Eocene omomyines (Primates, Haplorhini) from San Diego County, California". Journal of Human Evolution. 124: 7–24. Bibcode:2018JHumE.124....7A. doi:10.1016/j.jhevol.2018.04.010. PMID 30149995. S2CID 52096220.
  520. ^ Samuel T. Turvey; Kristoffer Bruun; Alejandra Ortiz; James Hansford; Songmei Hu; Yan Ding; Tianen Zhang; Helen J. Chatterjee (2018). "New genus of extinct Holocene gibbon associated with humans in Imperial China". Science. 360 (6395): 1346–1349. Bibcode:2018Sci...360.1346T. doi:10.1126/science.aao4903. PMID 29930136. S2CID 49362994.
  521. ^ Marc Godinot; Brigitte Senut; Martin Pickford (2018). "Primitive Adapidae from Namibia sheds light on the early primate radiation in Africa" (PDF). Communications of the Geological Survey of Namibia. 20: 140–162.
  522. ^ James B. Rossie; Andrew Hill (2018). "A new species of Simiolus from the middle Miocene of the Tugen Hills, Kenya". Journal of Human Evolution. 125: 50–58. Bibcode:2018JHumE.125...50R. doi:10.1016/j.jhevol.2018.09.002. PMID 30502897. S2CID 54625375.
  523. ^ St. Fleur, Nicholas (5 November 2018). "Tiniest Ape Ever Discovered Hints at the Rise of the Monkeys - The newly identified extinct primate weighed slightly less than an average house cat". The New York Times. Retrieved 7 November 2018.
  524. ^ Sergi López-Torres; Mary T. Silcox; Patricia A. Holroyd (2018). "New omomyoids (Euprimates, Mammalia) from the late Uintan of southern California, USA, and the question of the extinction of the Paromomyidae (Plesiadapiformes, Primates)" (PDF). Palaeontologia Electronica. 21 (3): Article number 21.3.37A. doi:10.26879/756.
  525. ^ a b Shundong Bi; Xiaoting Zheng; Xiaoli Wang; Natalie E. Cignetti; Shiling Yang; John R. Wible (2018). "An Early Cretaceous eutherian and the placental–marsupial dichotomy". Nature. 558 (7710): 390–395. Bibcode:2018Natur.558..390B. doi:10.1038/s41586-018-0210-3. PMID 29899454. S2CID 49183466.
  526. ^ Yuan-Qing Wang; Nao Kusuhashi; Xun Jin; Chuan-Kui Li; Takeshi Setoguchi; Chun-Ling Gao; Jin-Yuan Liu (2018). "Reappraisal of Endotherium niinomii Shikama, 1947, a eutherian mammal from the Lower Cretaceous Fuxin Formation, Fuxin-Jinzhou Basin, Liaoning, China". Vertebrata PalAsiatica. 56 (3): 180–192. doi:10.19615/j.cnki.1000-3118.180226.
  527. ^ James G. Napoli; Thomas E. Williamson; Sarah L. Shelley; Stephen L. Brusatte (2018). "A Digital Endocranial Cast of the Early Paleocene (Puercan) 'Archaic' Mammal Onychodectes tisonensis (Eutheria: Taeniodonta)". Journal of Mammalian Evolution. 25 (2): 179–195. doi:10.1007/s10914-017-9381-1. PMC 5938319. PMID 29755252.
  528. ^ Mark S. Springer; William J. Murphy; Alfred L. Roca (2018). "Appropriate fossil calibrations and tree constraints uphold the Mesozoic divergence of solenodons from other extant mammals". Molecular Phylogenetics and Evolution. 121: 158–165. Bibcode:2018MolPE.121..158S. doi:10.1016/j.ympev.2018.01.007. PMID 29331683.
  529. ^ A. V. Lopatin (2018). "A new record of Mongoloscapter (Talpidae, Lipotyphla, Mammalia) from the Oligocene of Mongolia". Paleontological Journal. 52 (6): 677–681. Bibcode:2018PalJ...52..677L. doi:10.1134/S0031030118060072. S2CID 92802900.
  530. ^ Barbara Rzebik-Kowalska; Andrea Pereswiet-Soltan (2018). "Contribution to the validity and taxonomic status of the European fossil shrew Sorex subaraneus and the origin of Sorex araneus (Soricidae, Eulipotyphla, Insectivora, Mammalia)". Palaeontologia Electronica. 21 (2): Article number 21.2.33A. doi:10.26879/788.
  531. ^ Antonio Borrani; Andrea Savorelli; Federico Masini; Paul P. A. Mazza (2018). "The tangled cases of Deinogalerix (Late Miocene endemic erinaceid of Gargano) and Galericini (Eulipotyphla, Erinaceidae): a cladistic perspective". Cladistics. 34 (5): 542–561. doi:10.1111/cla.12215. PMID 34649375. S2CID 90105058.
  532. ^ Lars W. van den Hoek Ostende (2018). "Cladistics and insular evolution, an unfortunate marriage? Another tangle in the Deinogalerix analysis of Borrani et al. (2017)". Cladistics. 34 (6): 708–713. doi:10.1111/cla.12238. PMID 34641636. S2CID 221550820.
  533. ^ Andrea Corona; Daniel Perea; Martín Ubilla (2018). "The humerus of Proterotheriidae (Mammalia, Litopterna) and its systematic usefulness: the case of "Proterotherium berroi" Kraglievich, 1930". Ameghiniana. 55 (2): 150–161. doi:10.5710/AMGH.10.12.2017.3148. S2CID 133665673.
  534. ^ Helder Gomes Rodrigues; Raphaël Cornette; Julien Clavel; Guillermo Cassini; Bhart-Anjan S. Bhullar; Marcos Fernández-Monescillo; Karen Moreno; Anthony Herrel; Guillaume Billet (2018). "Differential influences of allometry, phylogeny and environment on the rostral shape diversity of extinct South American notoungulates". Royal Society Open Science. 5 (1): 171816. Bibcode:2018RSOS....571816G. doi:10.1098/rsos.171816. PMC 5792951. PMID 29410874.
  535. ^ Alejo C. Scarano; Bárbara Vera (2018). "Geometric morphometric analysis as a proxy to evaluate age-related change in molar shape variation of low-crowned Notoungulata (Mammalia)". Journal of Morphology. 279 (2): 216–227. doi:10.1002/jmor.20766. hdl:11336/42192. PMID 29068070. S2CID 3455270.
  536. ^ M. D. Ercoli; A. M. Candela; L. L. Rasia; M. A. Ramírez (2018). "Dental shape variation of Neogene Pachyrukhinae (Mammalia, Notoungulata, Hegetotheriidae): systematics and evolutionary implications for the late Miocene Paedotherium species". Journal of Systematic Palaeontology. 16 (13): 1073–1095. Bibcode:2018JSPal..16.1073E. doi:10.1080/14772019.2017.1366956. hdl:11336/56600. S2CID 90152884.
  537. ^ Renata Sostillo; Esperanza Cerdeño; Claudia I. Montalvo (2018). "Taxonomic implications of a large sample of Tremacyllus (Hegetotheriidae: Pachyrukhinae) from the late Miocene Cerro Azul Formation of La Pampa, Argentina". Ameghiniana. 55 (4): 407–422. doi:10.5710/AMGH.18.12.2017.3146 (inactive 2024-11-14). hdl:11336/64326.{{cite journal}}: CS1 maint: DOI inactive as of November 2024 (link)
  538. ^ Bárbara Vera; Marcos D. Ercoli (2018). "Systematic and morphogeometric analyses of Pachyrukhinae (Mammalia, Hegetotheriidae) from the Huayquerías, Mendoza (Argentina): biostratigraphic and evolutionary implications". Journal of Vertebrate Paleontology. 38 (3): e1473410. Bibcode:2018JVPal..38E3410V. doi:10.1080/02724634.2018.1473410. hdl:11336/108629. S2CID 90879473.
  539. ^ Marcos Fernández-Monescillo; Bernardino Mamani Quispe; François Pujos; Pierre-Olivier Antoine (2018). "Functional anatomy of the forelimb of Plesiotypotherium achirense (Mammalia, Notoungulata, Mesotheriidae) and evolutionary insights at the family level". Journal of Mammalian Evolution. 25 (2): 197–211. doi:10.1007/s10914-016-9372-7. hdl:11336/87306. S2CID 26109653.
  540. ^ Wighart von Koenigswald; Kenneth D. Rose; Luke T. Holbrook; Kishor Kumar; Rajendra S. Rana; Thierry Smith (2018). "Mastication and enamel microstructure in Cambaytherium, a perissodactyl-like ungulate from the early Eocene of India". PalZ. 92 (4): 671–680. Bibcode:2018PalZ...92..671V. doi:10.1007/s12542-018-0422-8. S2CID 133969194.
  541. ^ Sarah L. Shelley; Thomas E. Williamson; Stephen L. Brusatte (2018). "The osteology of Periptychus carinidens: A robust, ungulate-like placental mammal (Mammalia: Periptychidae) from the Paleocene of North America". PLOS ONE. 13 (7): e0200132. Bibcode:2018PLoSO..1300132S. doi:10.1371/journal.pone.0200132. PMC 6051615. PMID 30020948.
  542. ^ Jorge Morales; Martin Pickford (2018). "A reassessment of Prionogale and Namasector (Prionogalidae, Hyaenodonta, Mammalia) with descriptions of new fossils from Napak, Uganda and Koru, Kenya" (PDF). Communications of the Geological Survey of Namibia. 20: 114–139.
  543. ^ Floréal Solé; Dubied Morgane; Kévin Le Verger; Mennecart Bastien (2018). "Niche partitioning of the European carnivorous mammals during the Paleogene". PALAIOS. 33 (11): 514–523. Bibcode:2018Palai..33..514S. doi:10.2110/palo.2018.022. S2CID 134345822.
  544. ^ John A. Moretti (2018). "Early Pleistocene leporids (Mammalia, Lagomorpha) of Roland Springs Ranch Locality 1 and the rise of North American Quaternary leporines". Quaternary International. 492: 23–39. Bibcode:2018QuInt.492...23M. doi:10.1016/j.quaint.2017.08.048. S2CID 90742480.
  545. ^ a b Sergi López-Torres; Mary T. Silcox (2018). "The European Paromomyidae (Primates, Mammalia): taxonomy, phylogeny, and biogeographic implications". Journal of Paleontology. 92 (5): 920–937. Bibcode:2018JPal...92..920L. doi:10.1017/jpa.2018.10. S2CID 134981979.
  546. ^ K. Christopher Beard; Grégoire Métais (2024). "Oldest record of Apatemyidae (Mammalia, Apatotheria) from Spain and the taxonomic status of Spanish paromomyids (Mammalia, Primatomorpha)". Journal of Vertebrate Paleontology. 43 (3). e2288651. doi:10.1080/02724634.2023.2288651.
  547. ^ a b c Eric De Bast; Cyril Gagnaison; Thierry Smith (2018). "Plesiadapid mammals from the latest Paleocene of France offer new insights on the evolution of Plesiadapis during the Paleocene-Eocene transition". Journal of Vertebrate Paleontology. 38 (3): e1460602. Bibcode:2018JVPal..38E0602D. doi:10.1080/02724634.2018.1460602. S2CID 89847768.
  548. ^ Jerry J. Hooker (2018). "Eocene antiquity of the European nyctitheriid euarchontan mammal Darbonetus". Acta Palaeontologica Polonica. 63 (2): 235–239. doi:10.4202/app.00457.2018.
  549. ^ a b Floréal Solé; Marc Godinot; Yves Laurent; Alain Galoyer; Thierry Smith (2018). "The European Mesonychid Mammals: Phylogeny, Ecology, Biogeography, and Biochronology". Journal of Mammalian Evolution. 25 (3): 339–379. doi:10.1007/s10914-016-9371-8. S2CID 207195968.
  550. ^ a b c d André R. Wyss; John J. Flynn; Darin A. Croft (2018). "New Paleogene notohippids and leontiniids (Toxodontia; Notoungulata; Mammalia) from the Early Oligocene Tinguiririca Fauna of the Andean Main Range, central Chile". American Museum Novitates (3903): 1–42. doi:10.1206/3903.1. hdl:2246/6901. S2CID 53066966.
  551. ^ a b Juan D. Carrillo; Eli Amson; Carlos Jaramillo; Rodolfo Sánchez; Luis Quiroz; Carlos Cuartas; Aldo F. Rincón; Marcelo R. Sánchez-Villagra (2018). "The Neogene record of northern South American native ungulates". Smithsonian Contributions to Paleobiology. 101 (101): iv-67. doi:10.5479/si.1943-6688.101.
  552. ^ Craig S. Scott (2018). "Horolodectidae: a new family of unusual eutherians (Mammalia: Theria) from the Palaeocene of Alberta, Canada". Zoological Journal of the Linnean Society. 185 (2): 431–458. doi:10.1093/zoolinnean/zly040.
  553. ^ A. V. Lopatin; A. O. Averianov (2018). "A new stem placental mammal from the Early Cretaceous of Mongolia". Doklady Biological Sciences. 478 (1): 8–11. doi:10.1134/S0012496618010027. PMID 29536398. S2CID 3864134.
  554. ^ a b Andrew J. McGrath; Federico Anaya; Darin A. Croft (2018). "Two new macraucheniids (Mammalia: Litopterna) from the late middle Miocene (Laventan South American Land Mammal Age) of Quebrada Honda, Bolivia". Journal of Vertebrate Paleontology. 38 (3): e1461632. Bibcode:2018JVPal..38E1632M. doi:10.1080/02724634.2018.1461632. S2CID 89881990.
  555. ^ Martin Jehle; Marc Godinot; Dominique Delsate; Alain Phélizon; Jean-Louis Pellouin (2018). "Evolution of plesiadapid mammals (Eutheria, Euarchonta, Plesiadapiformes) in Europe across the Paleocene/Eocene boundary: implications for phylogeny, biochronology and scenarios of dispersal". Palaeobiodiversity and Palaeoenvironments. 99 (2): 293–351. doi:10.1007/s12549-018-0331-6. S2CID 135259959.
  556. ^ Louis de Bonis; Floreal Solé; Yaowalak Chaimanee; Aung Naing Soe; Chit Sein; Vincent Lazzari; Olivier Chavasseau; Jean-Jacques Jaeger (2018). "New Hyaenodonta (Mammalia) from the middle Eocene of Myanmar". Comptes Rendus Palevol. 17 (6): 357–365. Bibcode:2018CRPal..17..357D. doi:10.1016/j.crpv.2017.12.003.
  557. ^ Esperanza Cerdeño; Bárbara Vera; Ana María Combina (2018). "A new early Miocene Mesotheriidae (Notoungulata) from the Mariño Formation (Argentina): Taxonomic and biostratigraphic implications". Journal of South American Earth Sciences. 88: 118–131. Bibcode:2018JSAES..88..118C. doi:10.1016/j.jsames.2018.06.016. hdl:11336/158508. S2CID 135197187.
  558. ^ Chiara Angelone; Stanislav Čermák; Blanca Moncunill-Solé; Josep Quintana; Caterinella Tuveri; Marisa Arca; Tassos Kotsakis (2018). "Systematics and paleobiogeography of Sardolagus obscurus n. gen. n. sp. (Leporidae, Lagomorpha) from the early Pleistocene of Sardinia". Journal of Paleontology. 92 (3): 506–522. Bibcode:2018JPal...92..506A. doi:10.1017/jpa.2017.144. S2CID 134492340.
  559. ^ Vladimir S. Zazhigin; Leonid L. Voyta (2018). "A new middle Miocene crocidosoricine shrew from the Mongolian Shargain Gobi Desert". Acta Palaeontologica Polonica. 63 (1): 171–187. doi:10.4202/app.00396.2017.
  560. ^ Jerry J. Hooker (2018). "A mammal fauna from the Paleocene-Eocene Thermal Maximum of Croydon, London, UK". Proceedings of the Geologists' Association. 131 (5): 458–473. Bibcode:2020PrGA..131..458H. doi:10.1016/j.pgeola.2018.01.001. S2CID 134941309.
  561. ^ Matías A. Armella; Daniel A. García-López; Lucía Dominguez (2018). "A new species of Xotodon (Notoungulata, Toxodontidae) from northwestern Argentina". Journal of Vertebrate Paleontology. 38 (1): e1425882. Bibcode:2018JVPal..38E5882A. doi:10.1080/02724634.2017.1425882. hdl:11336/87945. S2CID 90303847.
  562. ^ Sergi López-Torres; Łucja Fostowicz-Frelik (2018). "A new Eocene anagalid (Mammalia: Euarchontoglires) from Mongolia and its implications for the group's phylogeny and dispersal". Scientific Reports. 8 (1): Article number 13955. Bibcode:2018NatSR...813955L. doi:10.1038/s41598-018-32086-x. PMC 6141491. PMID 30224674.
  563. ^ Ray Stanford; Martin G. Lockley; Compton Tucker; Stephen Godfrey; Sheila M. Stanford (2018). "A diverse mammal-dominated, footprint assemblage from wetland deposits in the Lower Cretaceous of Maryland". Scientific Reports. 8 (1): Article number 741. Bibcode:2018NatSR...8..741S. doi:10.1038/s41598-017-18619-w. PMC 5792599. PMID 29386519.
  564. ^ Jin Meng; Shundong Bi; Xiaoting Zheng; Xiaoli Wang (2018). "Ear ossicle morphology of the Jurassic euharamiyidan Arboroharamiya and evolution of mammalian middle ear". Journal of Morphology. 279 (4): 441–457. doi:10.1002/jmor.20565. PMID 27228358. S2CID 38023914.
  565. ^ Julia A. Schultz; Irina Ruf; Thomas Martin (2018). "Oldest known multituberculate stapes suggests an asymmetric bicrural pattern as ancestral for Multituberculata". Proceedings of the Royal Society B: Biological Sciences. 285 (1873): 20172779. doi:10.1098/rspb.2017.2779. PMC 5832711. PMID 29467266.
  566. ^ Elsa Panciroli; Roger B.J. Benson; Richard J. Butler (2018). "New partial dentaries of amphitheriid mammalian Palaeoxonodon ooliticus from Scotland, and posterior dentary morphology in early cladotherians". Acta Palaeontologica Polonica. 63 (2): 197–206. doi:10.4202/app.00434.2017.
  567. ^ Alexander N. Kuznetsov; Aleksandra A. Panyutina (2018). "First paleoichnological evidence for baby–riding in early mammals". Ameghiniana. 55 (6): 668–676. doi:10.5710/AMGH.03.02.2018.3184. S2CID 133852517.
  568. ^ Mariela C. Castro; Francisco J. Goin; Edgardo Ortiz-Jaureguizar; E. Carolina Vieytes; Kaori Tsukui; Jahandar Ramezani; Alessandro Batezelli; Júlio C. A. Marsola; Max C. Langer (2018). "A Late Cretaceous mammal from Brazil and the first radioisotopic age for the Bauru Group". Royal Society Open Science. 5 (5): 180482. Bibcode:2018RSOS....580482C. doi:10.1098/rsos.180482. PMC 5990825. PMID 29892465.
  569. ^ Craig S. Scott; Anne Weil; Jessica M. Theodor (2018). "A new, diminutive species of Catopsalis (Mammalia, Multituberculata, Taeniolabidoidea) from the early Paleocene of southwestern Alberta, Canada". Journal of Paleontology. 92 (5): 896–910. Bibcode:2018JPal...92..896S. doi:10.1017/jpa.2018.2. S2CID 134594197.
  570. ^ Adam K. Huttenlocker; David M. Grossnickle; James I. Kirkland; Julia A. Schultz; Zhe-Xi Luo (2018). "Late-surviving stem mammal links the lowermost Cretaceous of North America and Gondwana". Nature. 558 (7708): 108–112. Bibcode:2018Natur.558..108H. doi:10.1038/s41586-018-0126-y. PMID 29795343. S2CID 43921185.
  571. ^ Donald Lofgren; Randall L. Nydam; Maddie Gaumer; Elisa Kong; Malcolm McKenna (2018). "New records of multituberculate mammals from the Goler Formation (Tiffanian, Paleocene) of California". Paludicola. 11 (4): 149–163.
  572. ^ a b Alexander Averianov; Thomas Martin; Alexey Lopatin; Pavel Skutschas; Rico Schellhorn; Petr Kolosov; Dmitry Vitenko (2018). "A high-latitude fauna of mid-Mesozoic mammals from Yakutia, Russia". PLOS ONE. 13 (7): e0199983. Bibcode:2018PLoSO..1399983A. doi:10.1371/journal.pone.0199983. PMC 6059412. PMID 30044817.
  573. ^ Zoltán Csiki-Sava; Mátyás Vremir; Jin Meng; Stephen L. Brusatte; Mark A. Norell (2018). "Dome-headed, small-brained island mammal from the Late Cretaceous of Romania". Proceedings of the National Academy of Sciences of the United States of America. 115 (19): 4857–4862. Bibcode:2018PNAS..115.4857C. doi:10.1073/pnas.1801143115. PMC 5948999. PMID 29686084.
  574. ^ Thierry Smith; Vlad A. Codrea; Ghéreint Devillet; Alexandru A. Solomon (2021). "A New Mammal Skull from the Late Cretaceous of Romania and Phylogenetic Affinities of Kogaionid Multituberculates". Journal of Mammalian Evolution. 29: 1–26. doi:10.1007/s10914-021-09564-7. S2CID 244194193.

 

Prefix: a b c d e f g h i j k l m n o p q r s t u v w x y z 0 1 2 3 4 5 6 7 8 9

Portal di Ensiklopedia Dunia