Beispiele für im dreidimensionalenRaum eingebettete Tori sind die Rotationstori. Rotationstori sind Rotationsflächen, die man erhält, indem man einen Kreis um eine Achse rotieren lässt, die in der Kreisebene liegt und den Kreis nicht schneidet. Falls man nicht nur die Kreislinie, sondern die gesamte Kreisfläche rotieren lässt, erhält man einen Volltorus.
Anders ausgedrückt wird ein Rotationstorus aus derjenigen Menge an Punkten gebildet, die von einer Kreislinie mit Radius den festen Abstand mit haben.
Ein Torus kann auch durch Identifizieren der Seiten eines Parallelogramms konstruiert werden. Dabei wird die rechte Kante des Parallelogramms mit seiner linken Kante und die obere mit der unteren Kante verheftet. Diese Topologie benutzen auch viele Computerspiele: Verlässt ein Spielobjekt auf einer Seite das Spielfeld, so taucht es auf der gegenüberliegenden Seite wieder auf.
Der Torus ist eine zweidimensionaleFläche. Allgemeiner betrachtet man in der Mathematik auch den -Torus, eine den zweidimensionalen Torus verallgemeinernde -dimensionale Mannigfaltigkeit. Davon abweichend finden sich in der deutschsprachigen Literatur gelegentlich auch die Bezeichnungen Doppeltorus, Tripeltorus etc. für Flächen mit zwei, drei und mehr Löchern.
Betrachtet man nur den inneren Teil des Torus, der von der -Achse einen Abstand kleiner gleich hat, ergibt sich die Oberfläche
Der äußere Teil des Torus, der von der -Achse einen Abstand größer gleich hat, hat die Oberfläche
Torus als Rotationsfläche
Ein Rotationstorus ist eine Rotationsfläche, die durch Rotation eines Kreises um eine in der Kreisebene liegende und den Kreis nicht schneidende Rotationsachse erzeugt wird.[3][4][5] Ein Rotationstorus kann als Menge der Punkte beschrieben werden, die von einer Kreislinie mit Radius den festen Abstand haben, wobei ist. In kartesischen Koordinaten mit der -Achse als Rotationsachse und den Mittelpunkten des rotierenden Kreises in der -Ebene wird er durch die Gleichung:
beschrieben. Durch Beseitigen der Wurzel ergibt sich die Gleichung 4. Grades
Man kann in der Torusoberfläche eine toroidale Koordinate und eine dazu senkrechte poloidale Koordinate einführen. Man denkt sich den Torus als durch einen Kreis entstanden, der um eine in der Kreisebene liegende Achse rotiert wird. Den Radius des ursprünglichen Kreises nennen wir , dieser Kreis bildet auch gleichzeitig eine Koordinatenlinie von . Den Abstand des Kreismittelpunkts von der Achse nennen wir die Koordinatenlinien von sind Kreise um die Drehachse. Beide Koordinaten sind Winkel und laufen von bis .
Der -Torus ist eine topologische Mannigfaltigkeit. Dies folgt aus der Tatsache, dass der -Torus das topologische Produkt aus 1-Sphären ist und die 1-Sphäre selbst eine topologische Mannigfaltigkeit ist. Die 1-Sphäre ist zusätzlich auch eine differenzierbare Mannigfaltigkeit und, da das Produkt differenzierbarer Mannigfaltigkeiten wieder eine differenzierbare Mannigfaltigkeit ergibt, ist der -Torus ebenfalls eine differenzierbare Mannigfaltigkeit.[7] Die Dimension von ist gleich .
Die 1-Sphäre, aufgefasst als Kreisgruppe, ist außerdem eine Lie-Gruppe. Da das Produkt mehrerer Lie-Gruppen mit der komponentenweisen Multiplikation wieder eine Lie-Gruppe ist, ist auch der -Torus eine Lie-Gruppe.[9]
Eingebettete Tori
Flache Tori
Da die Kreislinie offensichtlich in den eingebettet werden kann, kann der -Torus als Teilmenge des euklidischen Raums aufgefasst werden. Man betrachtet auf die riemannsche Metrik, die durch die euklidische Metrik des Raums auf dem -Torus induziert wird. Diese Metrik ist flach, das heißt, der -Torus ist lokal isometrisch zu einer Umgebung des .[10] Insbesondere ist daher seine Schnittkrümmung überall konstant null. Da der -Torus kompakt und somit auch vollständig ist, ist er eine flache Mannigfaltigkeit. Man spricht daher auch von einem flachen -Torus. Ein flacher 2-Torus kann nicht längentreu auf einen Rotationstorus im abgebildet werden, denn die Schnittkrümmung des Rotationstorus ist nicht überall null wie beim flachen 2-Torus.
Es gibt neben der oben beschriebenen noch weitere flache Metriken auf dem Torus. Flache 2-Tori können beschrieben werden durch ein Parallelogramm, dessen gegenüberliegende Seiten zusammengeklebt werden. Äquivalent dazu können flache Tori als topologische Faktorgruppen für zwei linear unabhängigeVektoren beschrieben werden. Im Spezialfall und erhält man den Quotienten.
Ein Rotationstorus ist ein im eingebetteter 2-Torus, der als Menge der Punkte beschrieben werden kann, die von einer Kreislinie mit Radius den festen Abstand haben, wobei ist.
Clifford-Tori
Ein Clifford-Torus ist ein spezieller in eingebetteter Torus. Nach der Identifizierung und lässt sich der Standard-Cliffordtorus beschreiben als
.
Weiters werden die Bilder von unter Isometrien der Standard-Metrik als Clifford-Tori bezeichnet.
Ein Clifford-Torus ist eine Minimalfläche bzgl. der Standardmetrik auf der . Die von Brendle bewiesene Lawson-Vermutung besagt, dass jeder als Minimalfläche in die eingebettete Torus ein Clifford-Torus ist.
Konstruktion aus einem Quadrat oder Würfel
Konstruktion zweidimensionaler Tori aus einem Quadrat oder Parallelogramm
Dabei wird die rechte Kante des Rechtecks oder Quadrats mit seiner linken Kante verheftet und seine untere Kante wird mit seiner oberen Kante verheftet. Diese Konstruktion funktioniert auch mit einem beliebigen Parallelogramm. Diese Topologie besitzen auch viele Computerspiele, zum Beispiel Asteroids oder Pac-Man: Verlässt ein Spielobjekt auf einer Seite das Spielfeld, so taucht es auf der gegenüberliegenden Seite wieder auf.
Konstruktion höherdimensionaler Tori aus einem Würfel oder Parallelepiped
Beim dreidimensionalen Torus oder 3-Torus handelt es sich um einen Quader oder Würfel, dessen sechs gegenüberliegende Flächen paarweise miteinander verheftet sind.
Beim vierdimensionalen Torus oder 4-Torus handelt es sich um einen Tesserakt, dessen acht gegenüberliegende Würfel paarweise miteinander verheftet sind.
Allgemein ist der -dimensionale Torus ein -dimensionaler Würfel , dessen gegenüberliegende -Hyperwürfel paarweise miteinander identifiziert sind. Man kann ihn auch als darstellen.
Auch hier kann man statt eines -dimensionalen Würfels ein beliebiges -dimensionales Parallelepiped verwenden, um durch Identifizieren der Seiten einen -dimensionalen Torus zu konstruieren.
Sieben-Farben-Satz
Der Sieben-Farben-Satz für den Torus besagt, dass 7 Farben immer ausreichen, eine beliebige Landkarte auf der Oberfläche eines Torus so einzufärben, dass keine zwei angrenzenden Länder die gleiche Farbe bekommen.
Das bedeutet, dass jeder Graph, der in den Torus eingebettet werden kann, eine chromatische Zahl von höchstens 7 hat (siehe Knotenfärbung). Weil der vollständige Graph in den Torus eingebettet werden kann, ist die chromatische Zahl gleich 7.[13][14]
In der Ebene oder auf einer Kugeloberfläche reichen weniger Farben. Der Vier-Farben-Satz besagt, dass vier Farben immer ausreichen, eine beliebige Landkarte in der euklidischen Ebene so einzufärben, dass keine zwei angrenzenden Länder die gleiche Farbe bekommen.[15][16]
Algebraischer Torus
In der Theorie algebraischer Gruppen wird Torus in einem anderen Sinn verwendet. Dort ist damit eine Gruppe gemeint, die isomorph zu einem endlichen Produkt von Kopien der multiplikativen Gruppe eines Körpers ist. Zur Abgrenzung spricht man dann von einem algebraischen Torus im Gegensatz zu einem topologischen Torus.
So ist zum Beispiel in der torischen Geometrie, dem Studium torischer Varietäten, ein Torus üblicherweise ein algebraischer Torus.[17]
Horntorus:[18] Für die Würfelverdoppelung fand Archytas von Tarent eine nach ihm benannte Kurve. Dazu verwendete er neben einem halben Zylinder und einem Kegelausschnitt auch einen Horntorus. Darin ist der Abstand des Kreismittelpunkts von der Achse (siehe Abschnitt Torus als Rotationsfläche) gleich dem Radius des ursprünglichen Kreises.
Marcel Berger: Geometry I. Translated from the 1977 French original by M. Cole and S. Levy. Universitext. Springer-Verlag, Berlin 2009, ISBN 978-3-540-11658-5.
Anatole Katok, Vaughn Climenhaga: Lectures on surfaces. (Almost) everything you wanted to know about them. Student Mathematical Library, 46. American Mathematical Society, Providence, RI; Mathematics Advanced Study Semesters, University Park, PA 2008, ISBN 978-0-8218-4679-7.
↑C. Leopold: Geometrische Grundlagen der Architekturdarstellung. Verlag W. Kohlhammer, Stuttgart 2005, ISBN 3-17-018489-X, S. 123, 129.
↑John M. Lee: Introduction to Smooth Manifolds (= Graduate Texts in Mathematics 218.) Springer-Verlag, New York NY u. a. 2003, ISBN 0-387-95448-1, S. 8.
↑John M. Lee: Introduction to Smooth Manifolds (= Graduate Texts in Mathematics 218.) Springer-Verlag, New York NY u. a. 2003, ISBN 0-387-95448-1, S. 21.
↑Tammo tom Dieck: Topologie. de Gruyter, Berlin 2000, ISBN 3-11-016236-9, S. 52.
↑John M. Lee: Introduction to Smooth Manifolds (= Graduate Texts in Mathematics 218.) Springer-Verlag, New York NY u. a. 2003, ISBN 0-387-95448-1, S. 39.
↑John M. Lee: Introduction to Smooth Manifolds (= Graduate Texts in Mathematics 218.) Springer-Verlag, New York NY u. a. 2003, ISBN 0-387-95448-1, S. 289.
↑Chelsey Poettker: Topology and the Four Color Theorem. (PDF; 0,4 MB) Southern Illinois University Edwardsville, 4. Mai 2010; abgerufen am 7. Juli 2022.
↑Neil Robertson, Daniel P. Sanders, Paul Seymour, Robin Thomas, Georgia Institute of Technology: The Four Color Theorem. 13. November 1995, abgerufen am 7. Juli 2022.
↑Oda: Lectures on Torus Embeddings and Applications. 1978, 1.1 Algebraic tori.